
ARBORESCENT LINKS AND MODULAR TAILS

ROBERT OSBURN AND MATTHIAS STORZER

Abstract. We prove an explicit formula for the tail of the colored Jones polynomial for a class
of arborescent links in terms of a product of theta functions and/or false theta functions. We
also provide numerical evidence towards a classification of the modularity of tails of the colored
Jones polynomial for alternating knots.

1. Introduction

Let K be a knot and JN (K; q) be the Nth colored Jones polynomial, normalized to be 1 for
the unknot and the classical Jones polynomial for N = 2. The colored Jones polynomial features
prominently in many open problems in quantum topology. For example, the holy grail in this
area is the Volume Conjecture [35, 42, 43, 45]. This conjecture relates the asymptotic behavior

of JN (K; q) evaluated at an Nth root of unity ζN := e
2πi
N to the simplicial volume (or Gromov

norm) of the knot complement. Precisely,

lim
N→∞

log |JN (K; ζN )|
N

=
Vol(S3 \K)

2π
(1.1)

for all knots K. One consequence of this conjecture is the following: if (1.1) is true, then a knot
K is trivial if and only if all of its colored Jones polynomials JN (K; q) are trivial. The conjecture
has been proven for the following knots and links [53]: torus knots, all hyperbolic knots with at
most seven crossings, Borromean rings, twisted Whitehead links, Whitehead chains and, very
recently, hyperbolic double twist knots [46]. In [57], Zagier formulated a generalization of (1.1)
which also incorporated the quantum modularity of JN (K; q) for hyperbolic knots K. For recent
work in this direction, see [9, 23,24,51].

In this paper, we are interested in stability properties for the coefficients of JN (L; q) where
L is a link. The tail of the colored Jones polynomial of a link L (if it exists) is a power series
ΦL(q) whose first N coefficients agree (up to a common sign) with the first N coefficients of
JN (L; q) for all N ≥ 1. In 2006, Dasbach and Lin [15] conjectured that the tail exists for all
alternating links L. This conjecture was first resolved by Armond [4] and then another proof
and an explicit q-multisum expression for the tail of JN (L; q) was given in [21]. Subsequent
intriguing developments include proving the existence (and non-existence) of the tail for families
of knots and links [5, 6, 16–19, 27–29, 40, 41], the categorification of the tail [39, 48, 52], higher
order stability [7,30], higher rank tails [36,54,55] and connections to representation theory and
vertex operator algebras [31–34].
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One can also find in [21] a table of forty-three conjectural identities between ΦK(q) and
products of theta functions and/or false theta functions, namely for a positive integer b, define

hb = hb(q) =
∑
n∈Z

εb(n)q
bn(n+1)

2
−n

where

εb(n) =

 (−1)n if b is odd,
1 if b is even and n ≥ 0,
−1 if b is even and n < 0.

This table [21, Table 6] consists of all alternating knots up to 84, the twist knots Kp, p > 0
or p < 0, the torus knots T (2, p), p > 0, each of their mirror knots K∗ and 8∗5. For example, we
have

Φ52(q) = (q)5∞
∑

a,b,c,d,e≥0

q2a
2+ac+ad+ae+b2+be+cd+de+a+c+d+e

(q)a(q)a+c(q)a+d(q)a+e(q)b(q)b+e(q)c(q)d(q)e

?
= h4.

(1.2)

Here and throughout, we use the standard q-Pochhammer symbol

(a)n = (a; q)n :=
n∏
k=1

(1− aqk−1),

valid for n ∈ N ∪ {∞}. Note that h1 = 0, h2 = 1 and h3 = (q)∞. In general, hb is a theta
function if b is odd and a false theta function if b is even. The modularity in the former
situation is classical [11] while false theta functions are only recently known as examples of
quantum modular forms [25, Section 4.4]. Andrews [3] verified the conjecture for the knots 31,
41 and 62. In [37], Keilthy and the first author proved not only (1.2), but all of the remaining
conjectural identities in [21] via a unified q-theoretic approach. This approach was then used
in [8] to extend [21, Table 6] to all alternating knots up to ten crossings. Curiously, there are
entries in [8, Tables 1 and 2] and [21, Table 6] in which a conjectural identity for ΦK(q) is not
known. Moreover, there is no known conjectural identity for any alternating knot (or its mirror)
from 1079 to 10123.

Our main goal in this paper is to prove an explicit formula for the tail of the colored Jones
polynomial for a class of alternating links in terms of products of hb’s. In order to state our main
result, we require some setup. For further details, see Section 2. A weighted tree1 Γ = (V, E , w)
is a finite planar tree with vertex set V, edge set E and weight w(v) ∈ Z associated to one section
around v ∈ V. Given Γ, one can associate a link L henceforth called an arborescent link. Γ is
called alternating if there exists a bipartition V+ ∪ V− of V with ±w(V±) ≥ 0. Here, w(V+)
(respectively, w(V−)) is the set of weights in V+ (respectively, V−). Note that Γ is alternating if
we can choose a sign for each vertex of weight 0 such that the sets V± of vertices whose weights
have sign ± form a bipartition of V. If Γ is alternating, then so is the corresponding link L. Our
main result is now the following.

1We assume that all weighted trees are reduced. See Remark 2.2 (ii).
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Theorem 1.1. Let Γ = (V, E , w) be an alternating weighted tree with arborescent link L. If
0 6∈ w(V−), then

ΦL(q) =
∏
v∈V+

hw(v)+e(v) (1.3)

where e(v) is the number of edges adjacent to v.

Remark 1.2. Given a weighted tree Γ with arborescent link L, the mirror image L∗ is con-
structed from the weighted tree obtained by flipping the signs of the weights of Γ. Thus, by
Theorem 1.1, if 0 6∈ w(V+), we have

ΦL∗(q) =
∏
v∈V−

h−w(v)+e(v). (1.4)

Remark 1.3. By Theorem 1.1 and Remark 1.2, one recovers all of the entries in [8, Tables 1
and 2] and [21, Table 6] without a “?”. For example, given the weighted tree

−2 3

we will see in Section 2 that the associated knot is K = 52. By (1.3) and (1.4), we have

Φ52(q) = h4, Φ5∗2
(q) = h3.

For the remaining arborescent knots K with “question marks”, the obstruction to finding an
identity and thus determining the type of modularity for ΦK(q) is the condition 0 6∈ w(V−) in
Theorem 1.1. This condition is equivalent to the fact that the reduced Tait graph of K is not the
edge-connected sum of polygons (see Corollary 3.6). We discuss these cases further in Section 5.

The paper is organized as follows. In Section 2, we recall the construction of arborescent
links as given in, e.g., [1, Chapter 17], [10, Chapter 12] or [20, Chapter 1]. In Section 3, we
prove Theorem 1.1 using properties of reduced Tait graphs for arborescent links (in particular,
see the key result Proposition 3.5 which is of independent interest). In Section 4, we give
applications of Theorem 1.1 to various examples of arborescent knots. In Section 5, we discuss
asymptotic properties of ΦK(q) when Theorem 1.1 is not applicable. These asymptotics suggest
a classification of alternating arborescent knots K such that ΦK(q) is a product of hb’s (see
Question 5.2).

2. Preliminaries

We begin by recalling some background from knot theory.

2.1. Tait graphs. Let L be an alternating link and D its associated sign-colored diagram which
satisfies the rule in Figure 1 at each crossing of L. The ±-Tait graphs T± of an alternating link
with sign-colored diagram D are the graphs with vertices corresponding to the ±-colored faces of
D. Two vertices form an edge if the corresponding faces share a crossing. For a given alternating
link, T+ is dual to T−. Moreover, the +-Tait graph for L is the −-Tait graph for the mirror L∗

and vice versa. The reduced Tait graphs T ′± are obtained from T± by replacing every set of two
edges that connect the same two vertices by a single edge and removing loops.
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++

−

−

Figure 1. + and − regions.

For example, a sign-colored diagram, Tait graphs and reduced Tait graphs for K = 52 are given
in Figure 2.

−−

+

+

−
+

+

T+ T ′+

T− T ′−

Figure 2. Signed-colored diagram, T± and T ′± for K = 52.

2.2. Arborescent links. Following [1, Chapter 17], [10, Chapter 12] or [20, Chapter 1], we
introduce arborescent links which are a class of links associated to weighted trees. The construc-
tion of arborescent links described below is equivalent to that of Conway’s algebraic links [14],
see [10, Chapter 14.3] for a direct comparison.

Definition 2.1. A weighted tree Γ = (V, E , w) is a planar embedding of a tree (V, E) together
with a weight w(v) ∈ Z assigned to one section around v for each vertex v ∈ V.
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For a given weighted tree Γ, the weights are depicted as integers written in its sections. We
now proceed as follows:

(1) Let v ∈ V be a vertex with weight w(v) and n ∈ Z≥0 adjacent vertices v1, . . . , vn ∈ V
in counterclockwise order around v. We construct a ribbon associated to v that has
n marked squares corresponding to vi, i = 1, . . . , n, followed by w(v) half-twists, see

Figure 3. We use the convention that is a positive half-twist. The ribbon has two

orientations: a horizontal core orientation (c) and a vertical normal orientation (n).

v1 vn· · · · · ·(c)

(n)

Figure 3. The ribbon associated to v.

(2) For every edge (v, v′) ∈ E , we plumb the ribbons for v and v′ along the squares for v′

and v such that the core orientation of v matches the normal orientation of v′ and vice
versa.

(3) The plumbed ribbons define a surface and the boundary of this surface is a link L. We
say that L is the arborescent link associated to Γ.

Remark 2.2. (i) If Γ is alternating, then so is the arborescent link L by (1)–(3).
(ii) A weighted tree Γ is reduced if it has no vertex of degree at most 2 and weight 0. According

to [1, Section 17.3 (0.2), Section 17.5.3], this condition ensures that any vertex with weight 0
and degree 2 can be removed from Γ without changing L and that L is prime and unsplittable.
Throughout this paper, we assume (without further mention) that all weighted trees Γ are
reduced.

We now illustrate this construction.

Example 2.3. (1) For the weighted tree in Figure 4, we construct the ribbons associated to the
vertices v1 and v2 in Figure 5. Plumbing the two ribbons in Figure 5 yields the surface whose
boundary can be transformed into the knot K = 52, see Figure 6.

−2
v1

3
v2

Figure 4. A weighted tree for 52.

(2) We consider the weighted tree in Figure 7. The ribbons corresponding to the vertices v1, v2
and v3 are given in Figure 8. Plumbing the three ribbons in Figure 8 leads to the surface whose
boundary can be transformed into the knot K = 85, see Figure 9.
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v2

The ribbon for v1

v1

The ribbon for v2

Figure 5. The two ribbons for Figure 4.

Figure 6. The surface for the two plumbed ribbons and 52.

v1

3 v0−0 2
v3

3 v2

Figure 7. A weighted tree for 85.

v1 v2 v3

The ribbon for v0

v0

The ribbon for v3

v0

The ribbon for v1 and v2

Figure 8. The three ribbons for Figure 7.



ARBORESCENT LINKS AND MODULAR TAILS 7

Figure 9. The surface for the three plumbed ribbons and 85.

2.3. Arborescent tangles. A tangle is defined as a region of a link diagram with exactly four
emerging strings in the directions NW, NE, SE and SW. Two tangles are equivalent if one can
be deformed into the other via a sequence of Reidemeister moves without changing the four
emerging strings or moving another string over the emerging strings. A weighted rooted tree is
a weighted tree with a marked vertex, the root, which has an emanating germ in one direction,
here depicted by . For a weighted rooted tree with root v0, the associated weighted tree is the
tree where v0 is considered as an ordinary vertex. In this case, we define an arborescent tangle
as the boundary of the surface corresponding to the associated weighted tree where the ribbon
for v0 is cut at the place corresponding to the germ, leaving four emanating strings. Consider
the weighted tree from Example 2.3 (1) with root v1 as in Figure 10. The corresponding tangle
is given by Figure 11.

−2
v1

3
v2

Figure 10. A weighted rooted tree for 52.

Figure 11. The tangle for Figure 10.

We extend the notion of alternating from weighted trees to weighted rooted trees and adapt
the bipartition V = V+ ∪ V− accordingly. In this case, the corresponding tangle is alternating.

The closure of a tangle is the link L that is obtained by connecting the string in the NW
direction with the one in the NE direction as well as the string in the SW direction with the
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one in the SE direction. For example, the closure of the tangle in Figure 11 is the 52 knot as
in Figure 6. The closure of an arborescent tangle is the arborescent link constructed from the
associated weighted tree.

The ±-Tait graphs T± for an alternating tangle are defined as in Section 2.1 with the addition
of marked vertices corresponding to the North and South faces or the East and West faces. They

are depicted by ? . The reduced Tait graphs T ′± of a tangle are obtained from the Tait graphs
T± of a tangle by replacing multiple edges with single edges and removing loops.

Remark 2.4. The (reduced) Tait graphs for the closure L of a tangle can be obtained from
the (reduced) Tait graphs of the tangle as follows:2 Assume that the North and South faces
are colored by ε ∈ {+,−} and thus the East and West faces are colored by −ε. Then the
(reduced) ε-Tait graph of L can be obtained from the (reduced) vertical Tait graph of the tangle
by umarking the marked vertices. The (reduced) −ε-Tait graph of L is formed by identifying
the two marked vertices in the (reduced) horizontal Tait graph of a tangle. For example, for
an arborescent tangle that is constructed from an alternating weighted rooted tree with root
v0 ∈ V−ε, the North and South faces are colored by ε.

Example 2.5. (1) Consider the tangle corresponding to the weighted rooted tree in Figure 12

w(v)

Figure 12. A weighted rooted tree for a single vertex.

If w(v) 6= 0 and ± = sign(w(v)), the Tait graphs T± and T∓ are given in Figure 13 with |w(v)|+1
vertices (including the two marked vertices) and |w(v)| edges, respectively.

· · ·? ?

?

· · ·

?

Figure 13. The Tait graphs T± (left) and T∓ (right) for Figure 12.

(2) The Tait graphs for the tangle in Figure 11 are given in Figure 14. From Figure 14, we
obtain the Tait graphs for 52 as depicted in Figure 2 by unmarking the marked vertices for T+
and identifying the marked vertices for T−.

?

?

? ?

Figure 14. The Tait graphs T+ (left) and T− (right) for Figure 11.

2Here and throughout, for ε ∈ {+,−}, we write −ε to mean the opposite choice of sign as for ε.
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3. Proof of Theorem 1.1

In order to prove Theorem 1.1, we need the following four results. We depict tangles T (with
indices) by circles, weighted trees Γ (with indices) by squares and Tait graphs T (with indices)
by hexagons. We also denote North-South (respectively, East-West) Tait graphs with marked
vertices as in Figure 15.

?

?

T ?? T

Figure 15. North-South (left) and East-West Tait (right) graphs.

Proposition 3.1. Let Γ be an alternating weighted rooted tree with root v0 and associated
tangle T . Let v0 ∈ Vε be connected to the subgraphs Γ1, . . . ,Γn via the vertices v1, . . . , vn ∈ V−ε
in counterclockwise order. Let T i

± denote the Tait graphs of the tangle corresponding to the tree
Γi with root vi for i = 1, . . . , n. Then the Tait graph Tε of Γ is given by Figure 16 (top) with
|w(v0)| + 1 additional vertices on the right, including the marked vertex. Moreover, the Tait
graph T−ε of Γ is given by Figure 16 (bottom) with |w(v0)| additional edges from the top vertex
to the bottom vertex.

T
1
ε

T
2
ε . . .

T
n
ε . . . ??

|w(v0)|

T
1
−
ε . . .

T
n
−
ε . . .

?

?

Figure 16. The Tait graph Tε (top) and the Tait graph T−ε (bottom).

Proof. By assumption, Γ has the shape as in Figure 17. Consider the ribbon corresponding to
v0 with gluing points for v1, . . . , vn followed by w(v0) half-twists. We assume that v0 ∈ V+, i.e.,
ε = + and w(v0) ≥ 0. A similar argument holds for v0 ∈ V−. As Γ is alternating, v1, . . . , vn ∈ V−
and so w(vi) ≤ 0. Let Ti denote the tangle for Γi. Then the tangle associated to Γi with root vi
is in Figure 18. The tangle for Γ with root v0 with marked squares for v1, . . . , vn is in Figure 19.
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We then glue the tangles associated with v1, . . . , vn to the one for v0 as in Section 2.2 and
rearrange the strands to obtain the tangle for Γ, see Figure 20. Using Figure 1 and Remark 2.4,
the Tait graphs T± for Figure 20 are of the shape in Figure 16. �

v0

Γ1

v1

Γ2

v2

Γn

vn

. . .

Figure 17. Γ with root v0.

Ti

Figure 18. Tangle for Γi with root vi.

v1 vn· · · · · ·

Figure 19. Tangle for Γ with root v0.

T
1

T
2 · · · T
n . . .

Figure 20. The tangle for Γ with root v0.
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Example 3.2. According to Example 2.5 (1), the Tait graphs for
3

are given in Figure 21.
Proposition 3.1 implies that the Tait graphs for the rooted tree in Figure 10 are given in Figure 22
in accordance with Figure 14.

? ?

?

?

Figure 21. The Tait graphs T 1
+ (left) and T 1

− (right) for the root v1 = 3.

T
1

+

?

?

?

?

T
1
−? ? ? ?

Figure 22. The Tait graphs T+ (top) and T− (bottom) for Figure 10.

Lemma 3.3. Let Γ = (V, E , w) be an alternating weighted rooted tree with |V| ≥ 2 and root
v0 ∈ V− as in Figure 23 with weighted subgraphs Γ i,j with roots xi,j and Tait graphs for the

v0

w1 wm

Γ 1,1

x1,1

Γ 1,m1

x1,m1

Γn,mn

xn,mn

Γn,1

xn,1

. . .

. . . . . .

Figure 23. Γ with root v0 ∈ V−.

corresponding tangles denoted by T i,j
+ for i = 1, . . . , n and j = 1, . . . ,mi. Then the Tait graph

for the tangle associated to Γ is given by Figure 24 with |w(v0)| edges from the top vertex to the
bottom vertex and w(wi) additional vertices on the bottom of the ith string.
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T
1,1

+

...

T
1,m1

+

...

T
n,1

+

...

T
n,mn

+

...

. . .

. . . · · ·

?

?

w(w1) w(wn)

Figure 24. Tait graph for Γ.

Proof. Consider the weighted subtree with root wi in Figure 25. By Proposition 3.1, the Tait

graph T i
+ corresponding to Figure 25 is given by Figure 26 where T i,j

+ are the Tait graphs for

Γ i,j with roots xi,j . We now apply Proposition 3.1 to Figure 23 and obtain that its Tait graph
is given by Figure 27 with |w(v0)| edges between the top vertex and bottom vertex. Inserting
Figure 26 into Figure 27 yields Figure 24. �

wi

Γ i,1

xi,1

Γ i,mi

xi,mi

. . .

Figure 25. Weighted subtree with root wi.
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T
i,1

+

T
i,2

+ . . .

T
i,m

i
+

. . . ??

w(wi)

Figure 26. Tait graph T i
+ for Figure 25.

T
1

+

T
n

+. . . · · ·

?

?

Figure 27. Tait graph of Figure 23.

We say that a Tait graph (of a link or tangle) consists of edge-connected polygons if it can be
built by gluing the polygons along a single edge.

Lemma 3.4. Let Γ = (V, E , w) be an alternating weighted rooted tree with |V| ≥ 2, root v0 ∈ V−
and 0 /∈ w(V−). Then the reduced Tait graph T ′+ of the tangle for Γ consists of edge-connected
polygons of sizes {w(v) + e(v) : v ∈ V+} and has an edge between the top vertex and bottom
vertex.

Proof. We proceed by induction on |V|. Assume that |V| = 2 with V± = {v±}. As Γ has no leaf
of weight 0 (see Remark 2.2), we have w(v+) 6= 0. By Example 2.5 (1), T ′+ is a polygon of size
w(v+) + 1.

Now assume that the claim is true for all Γ’s with less than |V| vertices. Let v0 ∈ V− be
connected to w1, . . . , wn ∈ V+ and wi be connected to the subgraphs Γ i,j (with vertices Vi,j) via
the vertices xi,j ∈ V− for i = 1, . . . , n and j = 1, . . . ,mi as in Figure 23. By abuse of notation,

let T i,j
+ be the reduced Tait graphs for Γ i,j with roots xi,j . With this notation, the reduced

Tait graph T ′+ is given as in Figure 24 with exactly one edge from the top vertex to the bottom

vertex because w(v0) 6= 0. By assumption, T i,j
+ consists of edge-connected polygons of sizes

{w(v) + e(v) : v ∈ (Vi,j)+} and has an edge between the top and bottom vertices. We denote

the reduced Tait graph T i,j
+ without this additional edge by T̃ i,j

+ as depicted in Figure 28.

If we replace the Tait graphs T n,j
+ by T̃ n,j

+ for j = 1, . . . ,mn in Figure 24 and move the

exterior edge across the rightmost string (consisting of the Tait graphs T̃ n,j
+ for j = 1, . . . ,mn

and the vertices below them), then T ′+ is given as in Figure 29. The edge from the top vertex
to the bottom vertex in Figure 29 separates edge-connected polygons of sizes

{w(wn) +mn} ∪
mn⋃
j=1

{w(v) + e(v) : v ∈ (Vn,j)+}
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?

?

T i,j
+

=

?

?

T̃ i,j
+

Figure 28. T i,j+ (left) and T̃ i,j+ (right).

T
1,1

+

...

T
1,m1

+

...

T
n−1,1

+

...

T
n−1,mn−1

+

...

· · ·

· · ·

T̃
n,1

+

...

T̃
n,mn

+

...

?

?

Figure 29. The reduced Tait graph T ′+ of the tangle for Γ.

on the right from the rest. If we apply the same procedure to the remaining strings on the left,
we obtain that T ′+ consists of edge-connected polygons of sizes

n⋃
i=1

mi⋃
j=1

{w(v) + e(v) : v ∈ (Vi,j)+} ∪
n⋃
i=1

{w(wi) +mi} = {w(v) + e(v) : v ∈ V+}

since mi = e(wi). �

Proposition 3.5. Let Γ and L be as in Theorem 1.1 and assume that |V| ≥ 2. Then the reduced
Tait graph T+ of L consists of edge-connected polygons of sizes w(v) + e(v) where v ∈ V+.
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Proof. Choose v0 ∈ V− and consider the alternating weighted rooted tree Γ with root v0. By
Lemma 3.4, the reduced +-Tait graph for Γ consist of edge-connected polygons of sizes {w(v) +
e(v) : v ∈ V+} which agrees with the Tait graph T+ of L after unmarking the marked vertices,
cf. Remark 2.4. �

For our discussion in Section 5, we prove the following result.

Corollary 3.6. Let Γ be an alternating weighted tree with arborescent link L and Tait graph T+
of L. Then T+ is not the edge-connected sum of polygons if and only if 0 ∈ w(V−).

Proof. If 0 /∈ w(V−), then Proposition 3.5 implies that T+ consists of edge-connected polygons.
Conversely, if v0 ∈ V− with w(v0) = 0, then Lemma 3.3 implies that the Tait graph T+ of Γ
with root v0 is given as in Figure 24 without an edge from the top vertex to bottom vertex
because w(v0) = 0. By Remark 2.2 (ii), the degree of v0 is greater than 2. Thus, T+ is not the
edge-connected sum of polygons because none of the edges drawn in Figure 24 decomposes T+
into polygons. �

We are now in a position to prove our main result.

Proof of Theorem 1.1. Let m ∈ N. Let L be an alternating link such that its reduced Tait
graph T ′+ consists of m edge-connected polygons of sizes bi ≥ 2, i = 1, . . . ,m. According
to [5, Theorem 2], ΦL(q) is uniquely determined by T ′+. From [5, Theorem 5.1], we have

ΦL(q) =

m∏
i=1

hbi . (3.1)

The result now follows from Proposition 3.5 and (3.1). �

4. Applications of Theorem 1.1

In this section, we give some consequences of Theorem 1.1. Since arborescent links are the
same as algebraic links, the subsequent results are presented using Conway’s notation [13].

4.1. 2–bridge knots. A 2–bridge knot (or rational knot) K can be constructed from a weighted
tree given in Figure 30 for d1, . . . , dn ∈ Z>0. The Conway notation for K is [dn . . . d1]. Here,

−d1 d2 −d3 . . .
(−1)ndn

Figure 30. A weighted tree for 2-bridge knots.

the vertices vj have weights dj . We partition the vertices into the sets V+ = {vj : j even} and
V− = {vj : j odd}. We have e(vj) = 1 if j = 1 or n and e(vj) = 2 otherwise. With the vector

(b1, . . . , bn) := (d1 + e(v1), . . . , dn + e(vn)),

Theorem 1.1 immediately implies the following result.

Corollary 4.1. If K is a 2–bridge knot as above, then

ΦK(q) =

n∏
j=1
j even

hbj , ΦK∗(q) =

n∏
j=1
j odd

hbj .
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Example 4.2. (1) In Example 2.3 (1), the knot K = 52 was constructed from the weighted tree
given in Figure 4. Thus, the Conway notation is [3 2] and so by Corollary 4.1, we have

Φ52(q) = h4, Φ5∗2
(q) = h3. (4.1)

Equation (4.1) also follows from (3.1) and the Tait graphs of K = 52 given in Figure 2.

(2) Let K = 74 which has Conway notation [3 1 3]. An associated weighted tree is given by
Figure 31 and so by Corollary 4.1, we have

Φ74(q) = h3, Φ7∗4
(q) = h24. (4.2)

−3 1 −3

Figure 31. A weighted tree for 74.

The reduced Tait graphs T ′± of K = 74 are given in Figure 32 and so (4.2) also follows from (3.1).

T ′+ T ′−

Figure 32. The reduced Tait graphs for 74.

4.2. Montesinos knots. A Montesinos knot K can be constructed by a star-shaped weighted
tree [1, Section 17.6.2] as in Figure 33 with center k ∈ Z≥0, m ∈ Z≥1 rays of length ni ∈ Z≥1
and d

(i)
1 , d

(i)
2 , · · · d(i)ni ∈ Z≥1 for i = 1, . . . ,m. The Conway notation for K is

[d(1); d(2); . . . ; d(m)+k]

where +k means k copies of + and d(i) denotes the concatenation of the entries in the ith ray.
For v ∈ V, we have

e(v) =


m if v is the center,

1 if v is a leaf,

2 otherwise.

For i = 1, . . . ,m and j = 1, . . . , ni, define

b
(i)
j = d(i)nj + e(vi,nj )

where vi,nj is the jth vertex in the ith ray. Another application of Theorem 1.1 is the following.

Corollary 4.3. If K is a Montesinos knot as above, then

ΦK∗(q) = hm+k

m∏
i=1

ni∏
j=1
j even

h
b
(i)
j
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−k

d
(1)
1 −d(1)2

· · ·
(−1)n1d

(1)
n1

d
(2)
1 −d(2)2

· · ·
(−1)n2d

(2)
n2

d
(m)
1 −d(m)

2
· · ·

(−1)nmd
(m)
nm

··
·

··
·

··
·

Figure 33. A weighted tree for Montesinos knots.

and, if k 6= 0,

ΦK(q) =
m∏
i=1

ni∏
j=1
j odd

h
b
(i)
j .

Example 4.4. Consider the Montesinos knot K = 916 which has Conway notation [3; 3; 2+]. A
weighted tree and diagram for 916 are given in Figure 34. By Corollary 4.3, we have

Φ916(q) = h24h3, Φ9∗16
= h4. (4.3)

The reduced Tait graphs of 916 are given in Figure 35 and so (4.3) also follows from (3.1).

3 −1 3

2

Figure 34. A weighted tree and diagram for 916.

T ′+ T ′−

Figure 35. The reduced Tait graphs for 916.
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4.3. A non-Montesinos knot. Lastly, we consider the knot K = 11a250 which has Conway
notation [(3; 2)1(3; 2)] and is not a Montesinos knot. A weighted tree [13, p. 38] and diagram for
11a250 are given in Figure 36. Hence, Theorem 1.1 is only applicable to 11a∗250. Thus, we have

Φ11a∗250
(q) = h23. (4.4)

The reduced Tait graphs of 11a250 are given in Figure 37 and so (4.4) also follows from (3.1).

2

3

−0 1 −0

2

3

Figure 36. A weighted tree and diagram for 11a250.

T ′+ T ′−

Figure 37. The reduced Tait graphs for 11a250.

5. Asymptotics of ΦK(q)

The first arborescent knot for which Theorem 1.1 is not applicable is 85. This knot is the
first case in a family of pretzel knots for which Theorem 1.1 does not apply. The first non-
arborescent knot is 818. In this section, we provide numerical evidence that the tail in these
situations cannot be written as a product of the functions hb = hb(q) and, more generally, is not
a classical modular form, quasimodular form or mock modular form. This leads to the question
of the classification of alternating knots K such that ΦK(q) can be written as a product of hb’s,
see Question 5.2 and Remark 5.3.

We first compare the asymptotics of hb(e
−h) as h→ 0 with the asymptotics of ΦK(e−h) for a

given knot K. This is motivated by a similar approach for the classification of modular Nahm
sums [12,47,49,50,56]. As h→ 0 on a ray in the right half-plane, we have

hb(e
−h) =

{
e−π

2/2bh
√

2π
bh (cos(2π(14 −

1
2b)) + O(h))) if b is odd,

2
b + O(h) if b is even.

(5.1)

The computation (5.1) follows from the usual modular transformation of hb if b is odd and
from [38, Proposition, p. 98] if b is even. In both cases, we have limh→0 h log(hb(e

−h)) ∈ π2Q.
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Hence, if a q-series f with asymptotics h log(f(e−h)) → V as h → 0 for some V ∈ C can be
written as a product of hb’s, the asymptotics in (5.1) imply that V ∈ π2Q. Although this
condition cannot be verified numerically, computations can suggest if V ∈ π2Q is likely.

Remark 5.1. A similar argument can be used to (numerically) exclude other modular behavior.
If g is a modular form of integer (or half-integer) weight for some subgroup of SL2(Z) of finite
index, then its modular transformation implies that

h log(g(e−h))→ V (5.2)

as h → 0 on a ray in the right half-plane for some V ∈ π2Q, see [50, Lemma 3.1]. The same
proof is also applicable to quasimodular forms (and mock modular forms) because they (their
completions) have a similar transfomation under S =

(
0 −1
1 0

)
. Therefore, if a q-series f has an

asymptotic as in (5.2), V /∈ π2Q would also exclude these modular behaviors of qcf(q) for any
c ∈ Q.

5.1. Pretzel knots. A pretzel knot P (d1, . . . , dn) with integers di ≥ 2 for i = 1, . . . , n is
an arborescent knot associated with a star-shaped weighted tree, i.e., a Montesinos knot with
center 0 and n rays of length one where the leaves have weight d1, . . . , dn, see Figure 38.

−0

d1

d2

dn

··
·

Figure 38. A weighted tree for P (d1, . . . , dn).

Here, Theorem 1.1 is not applicable. The tail of the colored Jones polynomial for pretzel knots
of the form K = P (2k + 1, 2u + 1, 2) for k, u ∈ Z≥1 has been computed explicitly. Recall that
the q-binomial coefficient is given by [

n

k

]
:=

(q)n
(q)k(q)n−k

.

By [16, Theorem 3.1], we have

ΦK(q) = (q)2∞
∑
l1≥0
· · ·
∑
lk≥0

∑
p1≥0
· · ·
∑
pu≥0

qL
2
1+···+L2

k+L1+···+Lk

(q)l1 · · · (q)lk
qP

2
1+···+P 2

u+P1+···+Pu

(q)p1 · · · (q)pu

[
lk + pu
pu

]
(5.3)

where Lj = lj + · · · + lk for j = 1, . . . , k and Pj = pj + · · · + pu for j = 1, . . . , u. As discussed
in Example 2.3 (2), K = 85 can be constructed from the weighted tree given in Figure 9. In
particular, note that Theorem 1.1 is not applicable as 0 ∈ w(V−). The Tait graph T+ of K = 85
is given in Figure 39 and thus (3.1) is also not applicable.
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T+

Figure 39. T+ for 85.

Observe that K = 85 = P (3, 3, 2) (see Figure 9) and so (5.3) implies

Φ85(q) = (q)2∞
∑
a,b≥0

qa
2+a+b2+b

(q)a(q)b

[
a+ b

b

]
= 1− 2q + q2 − 2q4 + 3q5 − 3q8 + q9 + O(q10).

(5.4)

By comparing the first two coefficients, we see Φ85(q) 6= h24h3 in contrast to Theorem 1.1. As
h↘ 0 and q = e−h ↗ 1, numerics suggest that we have

h log(Φ85(e−h)) → V1 (5.5)

where, with X1 ≈ 0.5436890 a root of x3 + x2 + x− 1,

V1 = −4 Li2(X1) + Li2(X
2
1 )− 2 log(X1)

2 +
π2

6
= −1.352936859 · · · .

Here, Li2 is the dilogarithm function [56]. Although we do not address it here, we note that (5.5)
can potentially be proven using the techniques in [22,50,56]. Computing V1 to a higher precision,
it seems unlikely that V1 ∈ π2Q is true. This suggests that qcΦ85(q) for any c ∈ Q cannot be
written as a product of hb’s and, more generally, is not modular as in Remark 5.1. If h → 0
on a fixed ray in the right half-plane with arg h = .45π, then the limit is even more convincing:
numerics suggest that we have

h log(Φ85(e−h)) → V2 (5.6)

where, with X2 ≈ −0.7718445− 1.115143i a root of x3 + x2 + x− 1,

V2 = −4 Li2(X2) + Li2(X
2
2 )− 2 log(X2)

2 − 4πi log(X) +
π2

6
= −14.12794 · · ·+ 3.177293 · · · i,

(5.7)

and V2 /∈ π2Q.
In view of (3.1), the following phenomenon seems to relate the Tait graph T+ of K = 85

to the double-sum in (5.4). The Tait graph T+ of K = 85 consists of two 5-gons that are not
edge-connected. If they were, then Φ85(q) would equal h25 by (3.1) and Φ85(q) is almost given

by h25, namely if
[
a+b
b

]
was not present in (5.4), then the resulting q-series would equal h25 by the

second Rogers-Ramanujan identity.
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Similar computations have been performed for pretzel knots K = P (2k + 1, 2u+ 1, 2) with
k, u ≤ 5 using (5.3). These computations suggest that for all of these pretzel knots we have
h log(ΦK(e−h)) → V as h → 0 for some V /∈ π2Q. Therefore, we suspect that ΦK(q) for these
knots K cannot be written as a product of hb’s. Moreover, the Tait graph of K consists of two
polygons of size 2k + 1 and 2u + 1, respectively. Finally, if

[
lk+pu
pu

]
is removed from (5.3), the

resulting q-series would equal h2k+1h2u+1 by the Andrews-Gordon identities [2].

5.2. The 818 knot. We also discuss the modularity of ΦK(q) for the first non-arborescent knot
K = 818 [13, 14]. Although K = 818 cannot be constructed from a weighted tree, it does arise
from the weighted graph [13, p. 151] given in Figure 40. The Tait graphs of K = 818 are given
in Figure 41 and thus (3.1) is not applicable.

1

−1

1

−11

−1

1

−1

Figure 40. A weighted graph and diagram for 818.

T±

Figure 41. The Tait graphs for 818.

Using the algorithm from [21] and an elementary (yet lengthy) calculation, we have

Φ818(q) = (q)2∞
∑
a,b≥0

(−1)a+b
q

1
2
a(a+1)+ 1

2
b(b+1)

(q)a(q)b

[
a+ b

b

]
(5.8)

= 1− 4q + 2q2 + 9q3 − 5q4 − 8q5 − 14q6 + 10q7 + 21q8 + 14q9 + O(q10).

From the first four coefficients, we see that Φ818(q) 6= h43 in contrast to Theorem 1.1. Similar
to 85, we can compute the asymptotics of Φ818(q) numerically. As h ↘ 0 on the real axis, it

appears that h log(Φ818(e−h)) → π2

3 which matches the asymptotics of a modular q-series. In

fact, it has the same leading asymptotics as h43 (which is the suggested formula for Φ818(q) from
Theorem 1.1 if it was applicable). However, if we instead consider the limit as h → 0 with
arg h = .45π, then according to numerics

h log(Φ818(e−h)) → V2 (5.9)
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where

V2 = −π
2

2
+ 4 Li2(i) = −5.757269 · · ·+ 3.663862 · · · i. (5.10)

This suggests that Φ818(q) cannot be a product of hb’s as V2 /∈ π2Q. The Tait graphs T± of

K = 818 in Figure 41 consist of four triangles and if
[
a+b
b

]
was absent in (5.8), then the resulting

q-series equals h43 = (q)4∞ (which would be consistent with (3.1) if it was applicable).

5.3. Questions and outlook. The numerical observations in Section 5.1 suggest the following
question.

Question 5.2. For an alternating arborescent knot K as in Theorem 1.1, are the following
equivalent:

(i) 0 /∈ w(V−),
(ii) The +-Tait graph of K is the edge-connected sum of polygons,

(iii) ΦK(q) is a product of hb’s.

Remark 5.3. By Corollary 3.6, (i) and (ii) of Question 5.2 are equivalent. Moreover, by
Theorem 1.1 and (3.1), either (i) or (ii) implies (iii). Clearly, it would be beneficial to consider
more examples, e.g., [26]. In view of Section 5.2, one could hazard the following: for any
alternating knot K, (ii) and (iii) are equivalent to the fact that K is an arborescent knot as in
Theorem 1.1 with 0 /∈ w(V−).

Finally, it would be desirable to understand the topological meaning of the (non)-modularity
of ΦK(q). Note that the limits in (5.6) and (5.9) for 85 and 818, respectively, can be rewritten
as

lim
N→∞

log(ΦK(e2πi/N ))

N
=

iV

2π
(5.11)

where 1
N → 0 along a ray in the upper half-plane. Because ΦK(q) = limN q

cNJN (K, q) for
some factor cN that is quadratic in N , equation (5.11) resembles the complexified Volume
Conjecture [44]. This suggests that V as in (5.7) and (5.10) could be related to hyperbolic
properties of K. This will be investigated in future work.
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Département de Mathématiques, Orsay, 1982.
[14] J.H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational

Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pp. 329–358, Pergamon Press, Oxford-New
York-Toronto, Ont., 1970.

[15] O.T. Dasbach, X.-S. Lin, On the head and tail of the colored Jones polynomial, Compos. Math. 142 (2006),
no. 5, 1332–1342.

[16] M. Elhamdadi, M. Hajij, Pretzel knots and q-series, Osaka J. Math. 54 (2017), no. 2, 363–381.
[17] M. Elhamdadi, M. Hajij, Foundations of the colored Jones polynomial of singular knots, Bull. Korean Math.

Soc. 55 (2018), no. 3, 937–956.
[18] M. Elhamdadi, M. Hajij and M. Saito, Twist regions and coefficients stability of the colored Jones polynomial,

Trans. Amer. Math. Soc. 370 (2018), no. 7, 5155–5177.
[19] M. Elhamdadi, M. Hajij and J. Levitt, q-series and quantum spin networks, J. Topol. Anal. 14 (2022), no.

3, 709–727.
[20] D. Gabai, Genera of the arborescent links, Mem. Amer. Math. Soc. 59 (1986), no. 339, i–viii and 1–98.
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