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Abstract

We provide chosen results of the application of some of the models described

in our paper “Review of Statistical Network Analysis: Models, Algorithms and

Software” (Statistical Analysis and Data Mining, 2012), when applied to the Caltech

University Facebook dataset (Traud et al., 2011). We provide commented R code

which may be downloaded from www.maths.ucd.ie/~mst/networks/R/. For details

on all models, methods and software please see the original paper.
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1 Descriptive Statistics

1.1 Network Summary Statistics

There are very strong local ties within the network, and influential nodes. The

following table was obtained using the statnet suite of R packages. The R code

used to obtain this table and the centrality measures in Section 1.2 can found in

SummaryStats.R.

edges triangle 2-star 3-kstar

16651 119562 1231409 40583909

1.2 Centrality and Prestige

Four centrality measures, degree, betweenness, closeness and eigenvector, were ap-

plied to the dataset. Each measure identified node 619 as the most central; the

actor boasts 496 ties in the network. All measures seemed to roughly agree in terms

of the score assigned to actors. Table 1 shows the correlation between centrality

scores for each measure. In particular, degree and eigenvector centrality scores have

a 98% correlation; note though that the relationship between measures in several

cases was non-linear. Figure 1 gives a plot of the relationship between eigenvector

and closeness centrality.

Betweenness Closeness Degree Eigenvector

Betweenness 1.00 0.49 0.75 0.66

Closeness 0.49 1.00 0.84 0.86

Degree 0.75 0.84 1.00 0.98

Eigenvector 0.66 0.86 0.98 1.00

Table 1: Correlation Table of centrality measures applied to Caltech dataset.

1.3 Community Finding and Clustering

Spectral Clustering result: Singular-Value decomposition of the graph Laplacian

and clustering of the resulting 8 largest eigenvectors resulted in a clustering that is

closely related to the recorded dormitory assignments of the students. Specifically,

the contingency between the clustering and the dorms was strongly statistically

significant and Cramér’s V was found to be 0.642. We provide code in Spectral.R

for this analysis.

Girvan-Newman Clustering result: We provide code which attempts to

find community structure in the Caltech data via the Girvan-Newman algorithm in
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Figure 1: While there is a strong positive relationship between the centrality measures,

the relationship is also clearly non-linear.

GirvanNewman.R. Clustering with this method did not return a satisfactory com-

munity structure, with the nodes being clustered into 517 groups. The three largest

groups had 130, 84 and 16 members respectively, while 507 of the clusters had only

single membership. The modularity score of the graph as edges were deleted is

shown in Figure 2. Note that the maximum modularity score is only about 10%.

While this particular algorithm fails to cluster actors in a satisfying manner, ap-

proaches with similar but more sophisticated algorithms have been applied to this

data with more success (Traud et al., 2011).

2 Visualization

2.1 Adjacency Matrix Visualizations

Figure 3 uses hclust.R to create an adjacency matrix visualization of the Caltech

network. A strong local ties structure is apparent from the blocks along the diagonal.
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Figure 2: This plot shows the modularity score of the Caltech network as edges are

removed, following the Girvan Newman algorithm. This clustering was performed using

the edge.betweenness.community and modularity functions in the igraph package.

2.2 Layout Algorithms

We present a subset of the common layout algorithms applied to the Caltech net-

work. We do not include the circle layout or the random layout methods as these

result in “hairball” plots for a network of this size and density. Even the layouts that

we do include (Reingold-Tilford, Fruchterman-Reingold, MultiDimensional Scaling

and Singular Vector Decomposition in Figures 4 to 7 respectively) result in plots

that are difficult to discern structure from. This shows the difficulty in visualizing

large real-world networks.

3 Classical Models

3.1 Erdős-Rényi

This simplistic model estimates a scalar probability of linkage equal to the mean of

the adjacency matrix. In this case it is 0.0574.
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Figure 3: A hierarchical clustering adjacency matrix visualization. This is the result of

the heatmap function in R on the Caltech dataset. The hierarchical clustering is performed

using hclust.

3.2 p1 and p2

The p1 and p2 models could not be fit to the Caltech network as they are intended

only for directed networks. We do fit a modified p2 model (without the reciprocity

parameter) to the Caltech data with p2.R using all 8 recorded covariates. Note

that the code took several hours to run. Goodness-of-fit is discussed for this code

in Section 5.

We also provide Generalized Linear Mixed Model R code for fitting the p2

model to the Lazega Lawyers friendship dataset (Lazega, 2001) in p2 lawyers.R.

We use a linear mixed model framework instead of the MCMC algorithm used in

van Duijn et al. (2004) but achieve similar results for the same choice of covariates

5



Figure 4: The results of the plot.igraph function in R to the Caltech dataset, with

Reingold-Tilford layout.

for all three p2 models in Table 1 of van Duijn et al. (2004).

3.3 Block Models

Using blockmodel.R we fit a blockmodel based on observed dorm allocations to the

Caltech network. The result is shown in Figure 8.

3.4 Exponential (family) Random Graph Models

We fit an ERGM to the Caltech dataset using the terms: number of edges, triangles

and geometrically weighted degree as these are among the most common choices for

ERGM terms. Goodness-of-fit results are presented in Section 5. We acknowledge

that better goodness-of-fit could be achieved using a more carefully chosen set of
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Figure 5: The results of the plot.igraph function in R to the Caltech dataset, with

Fruchterman-Reingold layout.

network summary statistics. We used the ergm package in R and the code took

approximately 35 seconds to run on a 3 GHz machine. The code is provided in

ergm.R.

4 Latent Variable Models

4.1 Latent Block Models

Mixed membership stochastic blockmodels with 2,3,4,5 and 9,10,11 underlying block-

models were fitted to the Caltech data. Models with smaller underlying classes

appeared to fit the data better; this may be due to the manner (collapsed Gibbs

sampling) with which the data was fit, however. In all cases a large amount of mixed
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Figure 6: The results of the plot.igraph function in R to the Caltech dataset, with mds

layout.

block membership occurred; this makes it difficult to identify prominent clusters in

the data, although overall network behaviour is predicted accurately, as measured

by AUC (see Section 5.1). We provide code using the using the R package lda in

MMSB.R.

4.2 Latent Position Cluster Models

Goodness-of-fit results are presented in Section 5. We used the VBLPCM package (the

MCMC based latentnet package could not cope with a network of this size) in R

and the code took approximately 32 minutes to run on a 3 GHz machine to fit a

variational Bayes approximation to a social random effects model with 15 groups in

a 3 dimensional latent space. lpcm.R provides R code to fit the model and assess
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Figure 7: The results of the plot.igraph function in R to the Caltech dataset, with svd

layout.

the fit using the techniques in Section 5.

5 Goodness-of-Fit and Validation

5.1 ROC Curves and AUC

We assess link prediction accuracy as measured by Area Under the Curve (AUC)

of the Receiver-Operating Characteristic (ROC) curve. The ROC curve is the plot

of true positive rate against false positive rate as the threshold probability above

which a link is predicted is varied. Imputing links as per Erdős-Rényi yields an AUC

of 0.5 (the model goes from predict all non-links to predict all links as the threshold

passes the observed network density). Any completely random imputation of links
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Figure 8: The results of the blockmodel function from the sna (Butts, 2010) package in

R, applied to the Caltech dataset using blockmodel.R. The blocks were allocated based

on observed dorms. The blocks along the diagonal are an indication that there is a higher

density of links between people in the same dorm.

also yields an AUC of 0.5. Only a model that incorrectly predicts all links as non-

links and vice-versa will score an AUC of 0 and a model that correctly predicts all

possible links correctly will score an AUC of 1.

The symmetric p2 model without reciprocity and using all 8 recorded nodal

attributes achieved an AUC of 0.897. For the MMSB (see MMSB.R), the AUC was

found to be 0.93 for the K = 3 block model and 0.858 for the K = 10 block model.

For the LPCM, the AUC was 0.883 for 15 clusters in 3 dimensions and 0.879 for

the 20 cluster model in 3 dimensional latent space, however the 15 cluster model

scored better when comparing the cluster assignments with the observed dormitory

assignments (Cramér’s V 0.481 as opposed to 0.403).
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5.2 Goodness-of-fit via Summary Statistics of Simulated

Networks

The R code in the files ergm.R and lpcm.R include function to produce the graphs in

this section. We compare the ERGM and LPCM fits using visual inspection of the

distribution of some network summary statistics derived from networks simulated

from the models fitted to the Caltech dataset. Figures 9 to 11 depict the fit for

the ERGM in terms of the distribution of nodal degree, edgewise shared-partners

and geodesic distance between dyads respectively. Similarly, Figures 12 to 14 depict

results for the LPCM.

The ERGM performs better than the LPCM on simulating networks with the

correct degree distribution but far poorer at capturing the edgewise shared-partner

distribution. The ERGM performs better and indeed very well at capturing the

geodesic distance distribution. The LPCM captured the largely dormitory driven

communities whereas the ERGM does not inform about clustering or community

finding.
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Figure 9: Degree goodness-of-fit plot for the Exponential Random Graph Model using

edges triangles and geometrically weighted degree terms.
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Figure 10: Edgewise-Shared-Partners goodness-of-fit plot for the Exponential Random

Graph Model using edges triangles and geometrically weighted degree terms.
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Figure 11: Geodesic distance goodness-of-fit plot for the Exponential Random Graph

Model using edges triangles and geometrically weighted degree terms.
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Figure 12: Degree goodness-of-fit plot for the Latent Position Cluster Model in 3 dimen-

sions with 15 clusters.
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Figure 13: Edgewise-Shared-Partners goodness-of-fit plot for the Latent Position Cluster

Model in 3 dimensions with 15 clusters.
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Figure 14: Geodesic distance goodness-of-fit plot for the Latent Position Cluster Model

in 3 dimensions with 15 clusters.
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