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Outline of the Talk

Introduce continued fractions and their properties
Introduce backwards continued fractions and their properties
Introduce the BCF and CF errors e,(x) and Ep(x)

Construct bounds for £,(x) and E,(x) on cylinder sets
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What are Continued Fractions?

The for x € R is the expression

x=ay+———— =:[a0, a1, -],

where xg = x, a = |x], xit1 = ===, and a; = |x;]. By this
construction, we get that ag € Z and a; > 1 for each i > 1.
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What are Continued Fractions?

The for x € R is the expression

x=ay+———— =:[a0, a1, -],

where xg = x, a = |x], xit1 = ===, and a; = |x;]. By this
construction, we get that ag € Z and a; > 1 for each i > 1.

The % of x is
1
n
_— :ao—|——1:[ao,,an]
Qn ai + 32_"_7

Litman — UC Davis

If You Want To Walk Forwards, Try Looking Backwards



Backwards Continued Fractions

The backwards continued fraction (BCF) expansion of x € R is the
expression

1

1
by by— 1

X = bo — =. [[bo,bl, ]]

where xp = x, bgp = [x] + 1, xj3+1 = ﬁ and b; = [x;] + 1. By
these calculations, we see that by € Z and b; > 2 for each i > 1.
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Backwards Continued Fractions

The backwards continued fraction (BCF) expansion of x € R is the
expression

1
x=by— ————— = [[bo, by, .]].
b]_ - bg—i

where xp = x, bgp = [x] + 1, xj3+1 = ﬁ and b; = [x;] + 1. By
these calculations, we see that by € Z and b; > 2 for each i > 1.

The nt" BCF convergent % of x is

& = by — i = [[bo7 ceey bn]]
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Example: CF and BCF Expansion of 7
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Example: CF and BCF Expansion of 7

7=101,31,1,1,15,2,72,...].
Let's look at some convergents.

Po Py w
0]=0= —<—
Qo = [0] Q 4
Pl P1 ™
0,1]=1= —_—>—
Q =011 = Qi 4
P2 3 P2 T
0,1,3 —<—
Q =1 I= Q 4

CF convergents alternate
between under- and
over-estimates.
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Example: CF and BCF Expansion of 7

T -10,1,3,1,1,1,15,2,72,...]. T = [1,5,3,17,2,74,11, .]].

4
Let's look at some convergents. Let's look at some convergents.
Po Po m P _my=1= Po_ ™
QO [0] =0= 60<Z % % 4
P P PL_mepod. AT
< = ) = - —>—
o, ~0L3=5= o< o L53ll=g= =g
CF convergents alternate BCF convergents converge
between under- and monotonically from above to the
over-estimates. value they are estimating.
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Why do we care about continued fractions?

m The denominators @, grow exponentially and

o
Qm Qm+2

P

_Pm L
Qm

< —.
o QQO—l—l

X
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Why do we care about continued fractions?

m The denominators @, grow exponentially and

o <
QQO+2 Qm Qm+1

m Continued fractions give the “best” rational approximations.

_Pm
Qm

X
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Why do we care about continued fractions?

m The denominators @, grow exponentially and

o <
QQO+2 Qm Qm+1

m Continued fractions give the “best” rational approximations.

_Pm
Qm

X

However, their oscillatory nature makes them hard to work with.
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Why do we care about backwards continued fractions?

m The denominators g,, grow exponentially and

1
Im’

’X pm| 1

dm
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Why do we care about backwards continued fractions?

m The denominators g,, grow exponentially and

1
Im’

’X pm| 1

dm

m BCFs are easier to work with than CFs.
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Why do we care about backwards continued fractions?
m The denominators g,, grow exponentially and

1
< =

’ Pm
X —
Im’

dm

m BCFs are easier to work with than CFs.

Theorem (L-Bjorklund)

The set of BCF expansions satisfy the following well-ordering
properties:
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Why do we care about backwards continued fractions?

m The denominators g,, grow exponentially and

1
Im’

’X pm| 1

dm

m BCFs are easier to work with than CFs.

Theorem (L-Bjorklund)

The set of BCF expansions satisfy the following well-ordering
properties:

[[bo, ---, bn]] < [[bos -, bn + 1]];
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Why do we care about backwards continued fractions?

m The denominators g,, grow exponentially and

1
< =

’ Pm
X —
Im’

dm

m BCFs are easier to work with than CFs.

Theorem (L-Bjorklund)

The set of BCF expansions satisfy the following well-ordering
properties:
B [[bo, .-, bn]] < [[bo,---s bn + 1]];

A [[bo, .-, bn—1, bn]] < [[bo; ---s bn—1, b}, ..., BL]] where b, <
b}, and s > n, for any b} > 2.
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Our Setting for Error Estimation
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Our Setting for Error Estimation

Continued Fractions

x€R, ag € Z and a; > 1.
The nth CF convergent of x is

L [a0, a1, a an|
Qn — |90, d1,4d2,.-.5dn
The is
Pn
Eqn(x) = |x — =
()= o
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Our Setting for Error Estimation

Continued Fractions

x€R, ag € Z and a; > 1.
The nth CF convergent of x is

L [a0, a1, a an|
Qn — |90, d1,4d2,.-.5dn
The is
Pn
Eqn(x) = |x — =
()= o
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Backwards Continued
Fractions

vy €R, by € Z and b; > 2.
The nth BCF convergent of y is

Pn _ [[bo, b1, b2, ..., ba]]

n

The nth term BCF error is
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The BCF Error £5(x)

05
04l
03l
— &2(x)

0.2

0.1
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o
o
o
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PO =
wlbo—> ¢
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-
The BCF Error e,(x)

0.5

0.4 :
— &2(x)
03[\, €5(%)
) — €4(X)
0.2 i I 65(X)
— €6(X)

0.1

08
1
3

0.0 0.2 T

[[17 2, 2]] =

N ——>
o | ;
o
wWIrN—>
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The CF Error Ey(x)

0.5 r
0.4 —
0.3 —
0.2 —

01}
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The CF Error E,,(x)
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-
BCF Cylinder Sets and BCF Error Bounds £1?%1(x)

The rth-level BCF cylinder set is

Ciibr,....b]] = 1x € R : rth BCF convergent of x = [[b, ..., b/]]}.

A bounding curve of level r is

fllL:b2br] (x) = limiting function for the BCF error of x given we are
using a m-term BCF approximation and the r-term
BCF expansion of x is [[1, by..., b]].
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Overall Bound for the BCF Error, f,,(x)

Theorem (L-Bjorklund)

For any x € [0, 1], we have em(x) < fim(x) where
1 ~ (1—x)?

k)= (&) (m-D&+1)  m=x

03f

o2

0.05
01f
o. 0.00

00 02 04 06 08 10 00 02 04 06 08 1.0

— &(x) f(x) — &(x) fs(x)
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——
Key ldea for Bounding the Error
along these values.

To obtain a bound for the error on (i1 p,,... b,], We must find the
maximum of £,(x) on Cj1,p,.... b, for n=2,3,... and interpolate
0.006
N
0.005 - %
‘{,‘
\
0.004[ \
\ — €3(x)
0.003 — &3(X)
— fl160
0.002 \ A\ |\ o ®
0.001
0.000
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The General Case f,,[q[l’bz""’br”(x)

Theorem (L-Bjorklund)

For x € C[[l ba,...b,]], I-€- the rth BCF convergent for x is
[[1, b2, ..., b]] = p:, we have the mth BCF error e ,(x) is bounded

by

flitbabrll oy (pr — qrx)? _ex)p?
" (m_ r)—i—qr(pr—qu) qEr +5r(X)'
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Some Examples of f,,[q[l’b”"’bf”(x)

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000
0.

Clna)
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— &(x)
— 18T
— f1820x)
— f1622(x)
— fa[[1,6,2,2,2]](x)
fs[[1,6,2,2,2,2]](x)

£,018222.221) )




-
The Maximum of E,(x) on Cp,... ]

0.0014 [
0.0012f
0.0010

i — E4(x)
0.0008 | Es(X)
0.0006 — E5(x)

[ — E7(x
0.0004 - 70
0.0002f
0.0000 Lmeumitbh A - M b '

03130 103135 03140 T 03145 103150 03155

0.312
L 0,3,6,4,1]  [0,3,6,1] [0,3,6,1,1]
Clo,3.6]
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The General Case for CF Bounds gio"®“(x)

Theorem (L-Bjorklund)

We have the following bounding function for the CF error En,(x)
on Coe,....c°

(Pr - er)2
Fm—r—|—1Fm—r + Qr(Pr - QrX)

if m— r is even

g’['?,CQ,...,Cr] (X) —

(Pr - er)2
Fm—r+1Fm—r - Qr(Pr - er)

where F, is the nth Fibonacci number, and we have Fo = 0,
Fr=F =1, and F, = F,—1 + F,—> for n > 2.

if m— ris odd,
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Some Examples of gt “l(x)

o,oooossé
voooosoé — EB®
0.0000255 o0

: — g7
o.oooozo; — g;10733](x)
0.000015? — gy0734](x)
0.000010 — g7[°'7'3'1](x)
5.x10°F — g7[07:312(x)
0.000000

Cors3 Cprsz  Clorsng

0[10.1366 0.1368 0.1370 0.137 0.1374 | 0.1376 0.1378

Co3
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Some Examples of gt “l(x)

0.0014

— Es5(X
0.0012 5(X)
0.0010 g5°#1(x)

— g8 1)
0.0008

— gs*82I(x)
0.0006

— 95[0,6,2,1]()()
0.0004 . 95[0,5,3]()()
0.0002 — g5[°'5’3'1](x)
0.0000 [ .

0.160 0.165

0.145 0.150

Crog,1,1]
Clos,1) Cio62 Clos3)

Clog
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In Conclusion...

m We were able to effectively bound the BCF or CF error on any
BCF or CF cylinder set.
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In Conclusion...

m We were able to effectively bound the BCF or CF error on any
BCF or CF cylinder set.

m We made some aesthetically pleasing pictures.
Future Directions...
m Transfer error estimations between ¢,,(x) and E,(x).

m Reprove old results and prove new results on CFs using
bounding curves.

m Study expansions of transcendental numbers.
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e
Thank You!

6.x107 -

5.x107

4.x107 |
3.x107 F

2.x107F

1.x107 |

g

.-‘-'!."‘AN

0.138277 0.138277 0. 138278 0.138278 0.138279 0.138279

— Ealx) — Er) — Eo(x) — g6°7433(x)
— g7[0,7,4,3,5](x) R g8[0,7,4,3,5](x)
— 98[0,7,4,3,5,1]()() 98[0,7,4,3,5,2]()()
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