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Introduction and Inspiration

m For g prime, the field Zg has a cyclic group of units Z;.
m The subgroup structure of Z; has been well-studied.

m Little is known about the additive gaps between elements of
the same multiplicative order.

m Here we aim to classify the positive integers n for which there
exists a prime q so that Zg contains adjacent elements of
multiplicative order n.
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Example: Zi1

6 7 8 9 10

5
5 10 10 10 5 2

X 1 2 3 4
ord(x) |1 10 5 5

where the ord(x) is the multiplicative order of x
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Example: Zi1

6 7 8 9 10

x |1 2 3 4
5 5 10 10 10 5 2

5
ord(x) | 1 10 5
where the ord(x) is the multiplicative order of x

Remark

Given n, we want to guarantee that modulo some prime q, we can
find adjacent elements of order n.
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Lucas Numbers and Mersenne Numbers

The nth Lucas number L,, is given by the linear recurrence

Ln = Ln—l + Ln—2

with the initial conditions Lo = 2 and L1 = 1.
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Introduction and Inspiration

Lucas Numbers and Mersenne Numbers

The nth Lucas number L,, is given by the linear recurrence
Ln — Ln—l + Ln—2

with the initial conditions Lo = 2 and L1 = 1.

The nth Mersenne number is of the form M, = 2" — 1.
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Background and Methods

Cyclotomic Polynomials

The nth cyclotomic polynomial, denoted ®,(x) is a monic,
irreducible polynomial in Z[x] having the primitive nth roots of
unity in the complex plane as its roots.
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Background and Methods

Cyclotomic Polynomials

The nth cyclotomic polynomial, denoted ®,(x) is a monic,
irreducible polynomial in Z[x] having the primitive nth roots of
unity in the complex plane as its roots.

m We may express this as
op(x) = [T (x=¢)
(i,n)=1
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Background and Methods

The Resultant

Definition

The resultant of two polynomials over a field K is defined as the
product of the differences of their roots in the algebraic closure of
K:

Res(f,g) = [J(x—y).

x,y€K:f(x)=g(y)=0
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The Resultant

Definition

The resultant of two polynomials over a field K is defined as the
product of the differences of their roots in the algebraic closure of
K:

Res(f,g) = [[(x—y).

x,y€K:f(x)=g(y)=0

Remark

Res(f,g) =0 (mod q) if and only if f and g share a root in Zg
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Algebraic Integers and Norm

m An algebraic integer is a complex number that is the root of a
polynomial with integer coefficients.
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Algebraic Integers and Norm

m An algebraic integer is a complex number that is the root of a
polynomial with integer coefficients.

m The field norm is a map that arises from certain types of field
extensions.

m The field norm of an algebraic integer is a rational integer.
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Algebraic Integers and Norm

m An algebraic integer is a complex number that is the root of a
polynomial with integer coefficients.

m The field norm is a map that arises from certain types of field
extensions.

m The field norm of an algebraic integer is a rational integer.

We are concerned with the specific norm

NonyalCn— & +1) =] o — & +1)

o€ Ga/(Q(Cn)/Q)
IT ¢—-ci+1
(i,n)=1
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Boiling Down The Problem

m For prime g > n, an element o € Zq has order n if and only if
a is a root of ®,(x) in Zg.
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m For prime g > n, an element o € Zq has order n if and only if
a is a root of ®,(x) in Zg.

m So, a and « + 1 are both of order n if and only if « is
simultaneously a root of ®,(x) and ®,(x + 1).
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m So, a and « + 1 are both of order n if and only if « is
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m For prime g > n, an element o € Zq has order n if and only if
a is a root of ®,(x) in Zg.

m So, a and « + 1 are both of order n if and only if « is
simultaneously a root of ®,(x) and ®,(x + 1).

m ®,(x) and ®,(x + 1) will share some irreducible factor
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Boiling Down The Problem

m For prime g > n, an element o € Zq has order n if and only if
a is a root of ®,(x) in Zg.

m So, a and « + 1 are both of order n if and only if « is
simultaneously a root of ®,(x) and ®,(x + 1).

m ®,(x) and ®,(x + 1) will share some irreducible factor
modulo g whenever Res(®,(x), ®p(x +1)) =0 (mod q).

m It is also known that ®,(x) will split into linear factors mod g
whenever g =1 (mod n).

m We conclude that if we find a prime ¢ =1 (mod n) that
divides Res(®p(x), ®,(x + 1)), there are consecutive elements
of order n modulo q.
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Boiling Down The Problem, cont.

m For the remainder of this talk, we will refer to
Res(®n(x), Pn(x + 1)) as I,.
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Boiling Down The Problem, cont.

m For the remainder of this talk, we will refer to
Res(®n(x), Pn(x + 1)) as I,.

m We have

1

I_n = ReS(q)n(X)? ¢,,(X + 1)) = H H (C;; - G) + 1)
(i,n)=

1(j,n)=1
= N(Cn — ¢ +1).
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Boiling Down The Problem, cont.

m For the remainder of this talk, we will refer to
Res(®n(x), Pn(x + 1)) as I,.

m We have
Mo =Res(®n(x), Pu(x +1) = [[ ] (¢4 - +1)
(i,n)=1(j,n)=1
- N(Cn — ¢+ 1).
(i,m)=1

m We are thus concerned with finding prime divisors of these
norms which are 1 modulo n.
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Lemmas

Lemma

For each n > 6, L, has a primitive, odd prime divisor p such that
p=1 (mod 2n).
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Lemmas

Lemma

For each n > 6, L, has a primitive, odd prime divisor p such that
p=1 (mod 2n).

Lemma (Konvalina)

For n odd, Ly = [T7_4(¢2 + ¢} — 1) = [1yp N(Ga — ¢S +1).
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Lemmas

Lemma

For each n > 6, L, has a primitive, odd prime divisor p such that
p=1 (mod 2n).

Lemma (Konvalina)

For n odd, Ly = [T7_4(¢2 + ¢} — 1) = [1yp N(Ga — ¢S +1).

Lemma

For any n > 6, every primitive prime divisor p of M, satisfies p = 1
(mod n)
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Proof

Lemma

For any n > 6, every primitive prime divisor p of M, satisfies p = 1
(mod n)

Matthew Litman

On Consecutive Primitive nth Roots of Unity Modulo g



Background and Methods

Proof

Lemma

For any n > 6, every primitive prime divisor p of M, satisfies p = 1
(mod n)

m Suppose p is a primitive prime divisor of M, = 2" — 1.
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Proof

Lemma

For any n > 6, every primitive prime divisor p of M, satisfies p = 1
(mod n)

m Suppose p is a primitive prime divisor of M, = 2" — 1.
m We have 2" =1 (mod p), so ord,(2) | n.
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Proof

Lemma

For any n > 6, every primitive prime divisor p of M, satisfies p = 1
(mod n)

m Suppose p is a primitive prime divisor of M, = 2" — 1.
m We have 2" =1 (mod p), so ord,(2) | n.
m If ord,(2) = d < n, then p | 29 — 1, which is a contradiction.
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Proof

Lemma

For any n > 6, every primitive prime divisor p of M, satisfies p = 1
(mod n)

m Suppose p is a primitive prime divisor of M, = 2" — 1.
m We have 2" =1 (mod p), so ord,(2) | n.
m If ord,(2) = d < n, then p | 29 — 1, which is a contradiction.

m We conclude that ord,(2) = n, so n||Z;|=p—1, and
p=1 (mod n).
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Results
m Prime Divisors of the Resultant
m Analytic Bounds on Relevant Prime Divisors
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Prime Divisors of the Resultant

Results

Theorem

There exists a prime q such that Z, contains consecutive primitive
nth roots of unity if and only if n #1,2,3,6.

Note that this statement is equivalent to the following:

We prove this theorem for n > 6 in three cases:
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Results

There exists a prime q such that Z, contains consecutive primitive
nth roots of unity if and only if n #1,2,3,6.

Note that this statement is equivalent to the following:

There exists a prime ¢ = 1 (mod n) dividing T, if and only if
n+#1,2,3,6.

We prove this theorem for n > 6 in three cases:
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Results

There exists a prime q such that Z, contains consecutive primitive
nth roots of unity if and only if n #1,2,3,6.

Note that this statement is equivalent to the following:

There exists a prime ¢ = 1 (mod n) dividing T, if and only if
n+#1,2,3,6.

We prove this theorem for n > 6 in three cases:
m nis odd.
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Prime Divisors of the Resultant

Results

There exists a prime q such that Z4 contains consecutive primitive
nth roots of unity if and only if n #1,2,3,6.

Note that this statement is equivalent to the following:

There exists a prime ¢ = 1 (mod n) dividing T, if and only if
n#1,2,3,6.

We prove this theorem for n > 6 in three cases:

m nis odd.
m n = 2k where k is odd.
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Prime Divisors of the Resultant

Results

There exists a prime q such that Z4 contains consecutive primitive
nth roots of unity if and only if n #1,2,3,6.

Note that this statement is equivalent to the following:

There exists a prime ¢ = 1 (mod n) dividing T, if and only if
n#1,2,3,6.

We prove this theorem for n > 6 in three cases:
m nis odd.
m n = 2k where k is odd.
m n=0 (mod 4).
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Prime Divisors of the Resultant

The Proof

m First we suppose n is odd. By a previous lemma, the nth
Lucas number has a primitive prime divisor g, where g =1
(mod 2n).
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Prime Divisors of the Resultant

The Proof

m First we suppose n is odd. By a previous lemma, the nth
Lucas number has a primitive prime divisor g, where g =1
(mod 2n).

m Observe that
Ly =TT71(G + ¢ = 1) = [gjn N(Ga — ¢ +11), and
NG =t +1) [ T
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Prime Divisors of the Resultant

The Proof

m First we suppose n is odd. By a previous lemma, the nth
Lucas number has a primitive prime divisor g, where g =1
(mod 2n).

m Observe that
Ly = TT7a (G + G = 1) = T N(Ca = 77 + 1), and
N(Cn =t +1) | T

mIf g N(¢p — ¢071 + 1), then g[N(Cq — ¢S + 1) for some
d <n.
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Prime Divisors of the Resultant

The Proof

m First we suppose n is odd. By a previous lemma, the nth
Lucas number has a primitive prime divisor g, where g =1
(mod 2n).

m Observe that
Ly =T (G + ¢ = 1) = gjn N(Ca — ¢GH + 1), and
N(Gn = ¢at+1) [ Th.

mIf g N(¢p — ¢071 + 1), then g[N(Cq — ¢S + 1) for some
d < n.

m This implies that g|Ly, which is a contradiction!
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Prime Divisors of the Resultant

The Proof

m First we suppose n is odd. By a previous lemma, the nth
Lucas number has a primitive prime divisor g, where g =1
(mod 2n).

m Observe that
Ly =T (G + ¢ = 1) = gjn N(Ca — ¢GH + 1), and
N(Gn = ¢at+1) [ Th.

mIf g N(¢p — ¢071 + 1), then g[N(Cq — ¢S + 1) for some
d < n.

m This implies that g|Ly, which is a contradiction!

m We may conclude that g | ', so modulo g there are
consecutive primitive nth roots of unity.
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Prime Divisors of the Resultant

The Proof, cont.

The case where n = 2k, where k is odd, follows easily from the
following fact.

Whenever k is odd, [ = .
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Prime Divisors of the Resultant

The Proof, cont.

The case where n = 2k, where k is odd, follows easily from the
following fact.

Whenever k is odd, [ = .

m We now treat the case where 4 | n.
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Prime Divisors of the Resultant

The Proof, cont.

m Suppose 4 | n, and see that N(¢, — (/241 4 DIl,.
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Prime Divisors of the Resultant

The Proof, cont.

m Suppose 4 | n, and see that N(¢, — (/241 4 DIl,.
m Apply the observation that

N(Cn — ¢S 1) = N(Co — (—1)¢n + 1) = N(2G, + 1)

= ] ca+1= ] —¢(-2-¢"

(I,n):l (l’n):]_

= (-2 ¢, ") = ®n(-2).

(i,n)=1
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Prime Divisors of the Resultant

The Proof, cont.

m Suppose 4 | n, and see that N(¢, — (/241 4 DIl,.
m Apply the observation that

N(Co — ¢SP4 1) = N(Co — (—1)Cn + 1) = N(2G + 1)
= ] ca+1= ] —¢(-2-¢"
(i,n)=1 (i,n)=1

= (-2 ¢, ") = ®n(-2).

(i,n)=1

m As 4| n, it can be shown that ®,(—2) = ®,(2), which is the
primitive part of the nth Mersenne number.
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Prime Divisors of the Resultant

The Proof, cont.

m Suppose 4 | n, and see that N(¢, — (/241 4 DIl,.
m Apply the observation that

N(Cn — ¢S 1) = N(Co — (—1)¢n + 1) = N(2G, + 1)

= ] ca+1= ] —¢(-2-¢"
(i,n)=1 (i,n)=1
= (—2-¢,") = ®a(-2).
(i,n)=1
m As 4| n, it can be shown that ®,(—2) = ®,(2), which is the
primitive part of the nth Mersenne number.
m All primitive prime divisors g of the nth Mersenne number

satisfy ¢ = 1 (mod n), and the proof is complete.
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Prime Divisors of the Resultant

The Exceptional Cases

The results on existence of primitive prime divisors for Lucas and
Mersenne numbers holds for n > 6. We can easily calculate I, for

n<b5
M=r=1
M3=T¢=4
Ms=5
M5 =121 = 112
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Prime Divisors of the Resultant

When n is prime

For the case when n = p is a prime number, we have an even
easier time finding such a finite field.

For a prime p, all primitive prime divisors of L, are congruent to 1
modulo p.
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Prime Divisors of the Resultant

Main Theorem and Some Interesting Corollaries

There exists a prime q such that Z4 contains consecutive primitive
nth roots of unity if and only if n #1,2,3,6.
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Prime Divisors of the Resultant

Main Theorem and Some Interesting Corollaries

There exists a prime q such that Z4 contains consecutive primitive
nth roots of unity if and only if n #1,2,3,6.

Corollary

There does not exist a finite field Zq with two adjacent primitive
6th roots of unity.
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Prime Divisors of the Resultant

Main Theorem and Some Interesting Corollaries

There exists a prime q such that Z4 contains consecutive primitive
nth roots of unity if and only if n #1,2,3,6.

Corollary

There does not exist a finite field Zq with two adjacent primitive
6th roots of unity.

Corollary

For q prime, Z4 has adjacent elements of odd order n if and only if
Zgq contains adjacent elements of order 2n.
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Analytic Bounds on Relevant Prime Divisors

Bounding the Relevant Prime Divisors

Let 0, be the number of prime divisors ¢ =1 (mod n) of I,
counted with multiplicity.
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Analytic Bounds on Relevant Prime Divisors

Bounding the Relevant Prime Divisors

Let 0, be the number of prime divisors ¢ =1 (mod n) of I,
counted with multiplicity.

The resultant T, satisfies |I,| < 3¢(n)?
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Analytic Bounds on Relevant Prime Divisors

Bounding the Relevant Prime Divisors

Let 0, be the number of prime divisors ¢ =1 (mod n) of I,
counted with multiplicity.

The resultant T, satisfies |I,| < 3¢(n)?

Corollary

If q|l,, then g < 3¢(n)?,
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Analytic Bounds on Relevant Prime Divisors

Bounds on the Number of Relevant Prime Divisors

The following bound holds for 0,:

In(3)

0, < @(n)Qm.

If n = p is prime, we have the refined bound

In(3)

%= (P mp 1y
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Further Interests
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Further Interests

For p a prime greater than or equal to 5, all primes q > p dividing
Ip satisfy g =1 (mod p).
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Further Interests

Further Interests

For p a prime greater than or equal to 5, all primes q > p dividing
Ip satisfy g =1 (mod p).

Let p > 5 be a prime, and let q be a prime. Whenever o and o+ 1
are primitive pth roots of unity in a finite field F4- where q > p,
we have a € .
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Further Interests

The following proposition is the beginning of an argument towards
proving our first conjecture:

Proposition

When p is prime, N((, — C{, +1)=1 (mod p) for each
1<j<p-1

It is much harder to reach the same conclusion for the individual
prime divisors of these norms.
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Further Interests

There seems to be a nice relationship between the multiplicity of a
prime divisor g of the resultant and the behavior of ®,(x) when
considered modulo g:
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Further Interests

There seems to be a nice relationship between the multiplicity of a
prime divisor g of the resultant and the behavior of ®,(x) when
considered modulo g:

Conjecture

For p prime, let k be the largest integer such that qk\rp for some
prime ¢ =1 (mod p). If k < PT_l, then there exist exactly k

distinct elements o, ..., o € Zg such that the order of «; and

aj+1ispforeachl <i<k. /fk > P22, there are exactly 25~

distinct elements o, ..., p-1 € Zg such that the order of «; and
2

a,+1/5pforeach1< 1.
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m Muhlenberg College for supporting the REU on which this
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m Muhlenberg College for supporting the REU on which this
work is based
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