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Key Definitions Laces potgnomite

over Fp,

Litman — UC Davis

For an integral polynomial f and prime p, let
1 - Background

Rp(f) = the image set of f modulo p
={yeFp:IxeF,st. f(x)=y (modp)},
Sp(f) = the sum over distinct residues of f modulo p

=Yy (modp)

yER(f)
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For an integral polynomial f and prime p, let
1 - Background

Rp(f) = the image set of f modulo p
={yeFp:IxeF,st. f(x)=y (modp)},
Sp(f) = the sum over distinct residues of f modulo p

=Yy (modp)

yER(f)

» If fis odd, Sy(f) =0 = study Sp(f) when f is not odd

» For a general polynomial, understanding 2R,(f) can be quite
difficult (e.g. how does |9i,(f)| behave as p — o07?)

» For some polynomials f, certain properties of R, (f) are
invariant for all primes p (including S,(f))
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Previous Studies of R,(f) and S,(f) Uices poynomite

over Fp,
Towards mp(f) Litman — UC Davis
v 2 +1
1. It's well known that [93,(x*)| = £5=, and for all 1 - Background

quadratics one has [R,(ax? + bx + ¢)| = pTH (p>3)

2. von Sterneck (1908) proved that if b> # 3¢ (mod p),
then

2p+(5)

‘%p(x3+bx2+cx+d)‘: 3
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Previous Studies of R,(f) and S,(f) Uices poynomite

over Fp,
Towards mp(f) Litman — UC Davis
v 2 +1
1. It's well known that [93,(x*)| = £5=, and for all 1 - Background

quadratics one has [R,(ax? + bx + ¢)| = pT’Ll (p>3)

2. von Sterneck (1908) proved that if b> # 3¢ (mod p),
then

2p+ (§)

‘%p(x3+bx2+cx+d)‘: 3

Towards Sp(f):
1. Gauss (1801) showed S,(x?) =0
2. For a# 0 (mod p), Gross—Harrington—Minnott (2017)
showed Sp(ax? + bx + ¢) = —%
3. The cubic polynomial case was handled by
Finch-Smith—Harrington—-Wong (2019) with a formula
depending on p (mod 6)
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Lucas Polynomials Laces potgnomite

over Fp,

Litman — UC Davis

Def'n't'on 1 - Background

The Lucas polynomials L,(x) for n > 0 are defined
recursively by Lo(x) =2, Li(x) = x, and
Lo(x) = x+ Lp—1(x) + Lp—2(x) for all n > 2.

The Lucas polynomials admit a Binet formula expansion: for

X+ Vx2+4 1 —x+Vx2+4
) = IRy L VR

one has the closed form expression
La(x) = w(x)" + (=w(x)"H)".

Furthermore, L,(x) is even/odd <= n is even/odd.
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Example — S7(L,)

Investigation of S7(L,) for 1 < n <48

n 57(L,7) n 57(Ln) n 57(L,7) n 57(Ln)
1 0 13 0 25 0 37 0
2 1 14 1 26 1 38 1
3 0 15 0 27 0 39 0
4 1 16 1 28 1 40 6
5 0 17 0 29 0 41 0
6 2 18 2 30 2 42 2
7 0 19 0 31 0 43 0
8 6 20 1 32 1 44 1
9 0 21 0 33 0 45 0
10 1 22 1 34 1 46 1
11 0 23 0 35 0 47 0
12 2 24 0 36 2 48 2

Distinct residues of
Lucas polynomials
over Fp,

Litman — UC Davis

1 - Background

6/20
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Investigation of S7(L,) for 1 < n <48

1 - Background

n 57(L,7) n 57(Ln) n 57(L,7) n 57(Ln)
1 0 13 0 25 0 37 0
2 1 14 1 26 1 38 1
3 0 15 0 27 0 39 0
4 1 16 1 28 1 40 6
5 0 17 0 29 0 41 0
6 2 18 2 30 2 42 2
7 0 19 0 31 0 43 0
8 6 20 1 32 1 44 1
9 0 21 0 33 0 45 0
10 1 22 1 34 1 46 1
11 0 23 0 35 0 47 0
12 2 24 0 36 2 48 2

Observation: the only values that appear for S7(L,) are -1, 0, 1, 2
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Main Result — S,(L,) Uices poynomite

over Fp,

Litman — UC Davis

1 - Background

Theorem (Brazelton, Harrington, L., Wong '21)

Let p be an odd prime, n a natural number. Then
Sp(Ln) € {-1,0,1,2}

and we can say exactly when each value will occur.

We have explicit formulas for S5(L,) for every prime p and
natural number n, the formulas are a bit too large to fit
together on this slide. We will see these formulas later in the
talk.
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Notation and Conventions

vVvYvyyVvyy

n is an even natural number
d:=gecd(n,p—1)

§:=gecd(n,2(p+1))

2" is the highest power of 2 dividing p — 1
2" is the highest power of 2 dividing 2(p + 1)

Distinct residues of
Lucas polynomials
over Fp,

Litman — UC Davis

1 - Background
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Notation and Conventions sty
over ]Fp

Litman — UC Davis

» nis an even natural number

» d:=gcd(n,p—1)

» 0 :=gcd(n,2(p+1))

» 2/ is the highest power of 2 dividing p — 1

1 - Background

» 27 is the highest power of 2 dividing 2(p + 1)
Each of these conventions gives us a way to simplify things:
» neven = Ly(x) = w(x)" +w(x)""

> {04} = {Cg_l/d}, (p—1 = primitive (p — 1)** root of
unity

> {Cf(’;,ﬂ)} = {Cf(erl)/é}
> If p=1 (mod 4), 251 isodd <= 2" |n.

> prE3(mod4),%isodd <~ 2" |n
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M a i n Resu It — %p( Ln) Distinct residuels of

Lucas polynomials
over Fp,

Litman — UC Davis

Theorem (Brazelton, Harrington, L., Wong '21)

1 - Background

Let n,d,d, r be as previously defined. For p =3 (mod 4),
P11 o
{ 5 J if 2" | n;

[Rp(Ln)] = {2d1l+ [”“} if 27 f n,

20
and for p=1 (mod 4),

71+1 if 2|| dandd #2;

ol =4 2 7
[2d—‘ ifd4|d or d=2,
{”“J if 2 || 5

1 ifd=2
{p+1J if4)5, 0 if d#2.

Oq

20
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Hyperbolic, Elliptic, and Parabolic elements of F, Ui

over Fp,

Litman — UC Davis

We partition [F,, into subsets depending on the value of

x+VXxe+4.

_ 2-Hp, Ep, & P
x2 + 4 present under the square-root in w(x) = 5

H, = {x € F, : x* + 4 is a quadratic residue mod p},
Ep={x€eF,: x? + 4 is a quadratic non-residue mod p},
Pp={x€F,:x>*+4=0(mod p)}.

Elements of H,, £y, and P, are called hyperbolic, elliptic,
and parabolic, respectively.
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Hyperbolic, Elliptic, and Parabolic elements of F, Ui

over Fp,

Litman — UC Davis

We partition [F,, into subsets depending on the value of

x+VXxe+4.
Y

_ 2-Hp, Ep, & P
x2 + 4 present under the square-root in w(x) =

H, = {x € F, : x* + 4 is a quadratic residue mod p},
Ep={x€eF,: x? + 4 is a quadratic non-residue mod p},
Pp={x€F,:x>*+4=0(mod p)}.

Elements of H,, £y, and P, are called hyperbolic, elliptic,
and parabolic, respectively.

By studying the images of each of these sets under L,, we
are able to get a handle on S,(L,) and PR, (L)
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Distinct residues of
Lucas polynomials
over Fp

Litman — UC Davis

> If x € 7-[,,, then w(x) € Fp and w(x)P~1 =1 = 1 - Background
w(x) = p 1, for some a, where Cp—1 is a primitive 2-Hp, Ep & Pp
(p — 1)st root of unity.

3-p=3mod4

4-p=1mod 4
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Hp, Ep, Pp and their relation to F,, and F

» If x € Hp, then w(x) € Fp and w(x)P~1 =1 =
w(x) = (5_1, for some a, where (,_1 is a primitive
(p — 1)st root of unity.

> If y € &, then w(y) € Fo\Fp, = w(y)” 1 =1.

Distinct residues of
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» If x € Hp, then w(x) € Fp and w(x)P~1 =1 =
w(x) = (5_1, for some a, where (,_1 is a primitive
(p — 1)st root of unity.

> If y € &, then w(y) € Fo\Fp, = w(y)” 1 =1.

» If z € Pp, then w(z) =z/2 € F, and z = /—4
= z =22}, where j = /—1.
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Hp, Ep, Pp and their relation to F,, and F

» If x € Hp, then w(x) € Fp and w(x)P~1 =1 =

w(x) = (5_1, for some a, where (,_1 is a primitive

(p — 1)st root of unity.
> If y € &, then w(y) € Fo\Fp, = w(y)” 1 =1.

» If z € Pp, then w(z) =z/2 € F, and z = /—4
= z =22}, where j = /—1.

Pp is nonempty <= p=1 (mod 4)

In this situation, we see that

Ln(Z) = W(z)" —|—w(z)*” — i = 2(_1)n/2

Distinct residues of
Lucas polynomials
over Fp,

Litman — UC Davis

2-Hp, Ep, & Pp
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Explicit Description of H,, &y, Py

Proposition

For y € £,, we have that w(y)P*! = —1 in Fp. In particular,
= Cé’(pﬂ), where b is some odd number,

we may write w(y)

and ((p41) Is a primitive 2(p + 1)th root of unity in F .

From the definition of w(x), we have x = w(x) — w_l(x) =

>H,,—{

p—1

p— 1

0<a<p-—1, a#7t (";1)}

> &= {Cf(erl) N C2—(P+1) 1< b<2(p+1)odd,

> P, = {+2i}

b 2erl) 321

Distinct residues of
Lucas polynomials
over Fp,

Litman — UC Davis

2-Hp, Ep, & Pp
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Explicit Description of H,, &y, Py

Proposition

Fory € &,, we have that w(y)P*! = —1 in Fp. In particular,
we may write w(y) = Cé’(pﬂ), where b is some odd number,
and ((p41) Is a primitive 2(p + 1)th root of unity in F .

From the definition of w(x), we have x = w(x )—w‘l(x) =
>H,,—{p1 Jli0<a<p-1, a# et (";1)}

> Ep:{Cf(erl)_C?_(PJrl):1§b§2(p+1) odd,
2(p+1) 3(2(p+1
b4 e 2

> P, = {+2i}

For an element of the form t = (2, — (@ (m|p? — 1), one has

Lo(t) = €32 + ™

Distinct residues of
Lucas polynomials
over Fp,

Litman — UC Davis

2-Hp, Ep, & Pp
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p = 3 (mod 4) — Images of H,, &, Uices poynomite

over Fp,

Litman — UC Davis

For p =3 (mod 4), one has

1/p—1 3-p=3mod4

Ln(HP):{Ci—l+C;31:O§a§<_1 }

d a4 2 d
n - +1
B
and their intersection satisfies
{23 if2"|nm
Ln(Mp) N La(Ep) = ‘

0 otherwise.
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p = 3 (mod 4) — Images of H,, &, Uices poynomite

over Fp,

Litman — UC Davis

For p =3 (mod 4), one has

1/p—1 3-p=3mod4

Ln(Hp) = {Ci—l-FCp_al: 0<a< = <_1>}

d R 2 d
n — +1

to(ea) = {077 (lo + a2 ) 11 < 0.2 28 o)

§
and their intersection satisfies
{2} if 2" | nm
Ln(Hp) N La(Ep) = .

0 otherwise.

From these descriptions, we can directly work out Sy,(Ly)
and PR,(L,) for every prime p and even natural number n.
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First step towards S,(L,) — S;{”(L,,) and S,f"(L

Proposition (Brazelton, Harrington, L., Wong '21)

Suppose that p =3 (mod 4). Then the hyperbolic and
elliptic sums are given by

L) = {

SEP(L,,) =

2 if(p—1)|n

1 otherwise.

1 it 228 2 1 s odd;

1 if (2] 25 and 250 2 9)
2 if §=2(p+1);

~2 i#8=p+]

0 if 4|2t

n)

We'll outline the elliptic case as the hyperbolic case is similar

and simpler.

Distinct residues of
Lucas polynomials
over Fp,

Litman — UC Davis

3-p=3mod4
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g istinct residues o
P rOOf Of Spp ( Ln) DLuzas :;olyndomials]c

over Fp,

Litman — UC Davis

La(Es) = {077 (¢ + 22 ) 11 2 b2 22 o

3-p=3mod4

. (21( 2(’”1)) (p;rl) is odd, hence 4 | §, and therefore

4| n, so (—1)"2 = 1. The collection ¢4,.,, + (32
Azl AR

( +1)

runs over all powers of (a(p+1), With (2 26i1) twice, hence
6

£ P+1)
SPP(L") = Z C@ +C2 p+1

1<a< 2ot

_Jo+1 if 241 £ q;
141 if 22 — g

1 i #2(p+ 1)
2 ifs=2(p+1).
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g - istinct residues of
Proof of S,”(L,) — Continued Vucas ponomns

over Fp,

2. (2 I @): In this case, 2(”;1) is even and since 2(p + 1) Litman - UC Davis
is divisible by 8, we must have 4 | § again yielding
(—1)"/2 = 1. This time we have only odd powers of a1,
5

M . . .
including (,..,) = —1 twice. This yields 3-p=3mod 4
5

& el 0+(-1) if 2B 2o
Sp (Ln) = Z C2<p+1> +C2<p+1 = (=1) (P+1)
o —1+(-1) if =2,
1<a< 2etd)
aodd
)1 ifdFp+1;
-2 ifs=p+1.

: (4| p+1)) Neither 2(p+1) nor (pH) are odd. After a
lemma on summing odd powers of ROU, the sum at hand is
S5 (L) = 3 (~1)" (s = O =

2(p+1)
1<a<l=5—

a odd o



p =3 (mod 4) - S5,(L,)

Theorem (Brazelton, Harrington, L., Wong)
For p =3 (mod 4),

2 ifd=p—1land (6=2(p+1)or4| P“))
1 if d=p—1and %U#llsoddor
2||Mandw7ﬁ2)) ord#p—1and
=2(p+1)and 4| p+1))
0 ifd=p—1landd=p+1,
ord# p—1and (@7&1isodd
or (2“ p+1 and@#@);
-1 ifd;«ép—landézp—i-l.

Distinct residues of
Lucas polynomials
over Fp,

Litman — UC Davis

3-p=3mod4
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p =3 (mod 4) - S5,(L,)

Theorem (Brazelton, Harrington, L., Wong)
For p =3 (mod 4),

2 ifd=p—1land (6=2(p+1)or4| P*”)
1 if d=p—1and %U#llsoddor
2||Mandw7ﬁ2)) ord#p—1and
=2(p+1)and 4| p+1))
0 ifd=p—1landd=p+1,
ord# p—1and (@7&1isodd
or (2H p+1 and@#@);
-1 ifd;ép—landézp—i-l.

To calculate [9R,(L,)|, calculate the sizes of L,(Hp), La(Ep).
Ln(Hp) N Ln(Ep) and use inclusion-exclusion

Distinct residues of
Lucas polynomials
over Fp,

Litman — UC Davis

3-p=3mod4
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p =1 (mod 4) — Images of H,, &y, P, e

over Fp,

Litman — UC Davis

For p=1 (mod 4), one has

-1 -1
L,,(?—lp):{ 1 +(,3:0<a< P , a;ép4 } 4-p=1mod4

Ln(gp) = {(?(pﬂ) + g(iﬂ) :1<a<2(p+1), aodd,
5 .
p+1 3(p+1)
2 72
{=2} if n=2 (mod 4);

Ln(Pp) = {{2} if n=0 (mod 4).
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p=1(mod4)-5,(L,)

Theorem (Brazelton, Harrington, L., Wong '21)

Let p be an odd prime, n an even natural number,
d =gcd(p—1,n), § = gcd(2(p + 1), n), and 2" the highest
power of 2 dividing p— 1. For p=1 (mod 4),

2 if (p?P—1)]|n;
1 if (2]|dandd #p+1),
or (d=p—1landd#2(p+1)),
or (2"|d, d#p—1andd=2(p+1));
0 if d=p+1,
or(2"|d, d#p—1and §#2(p+1)),
or(4]d, 2"{d, and 6 =2(p+1));
—1 if4]|d, 2"td, and § #2(p+1).

Distinct residues of
Lucas polynomials
over Fp,

Litman — UC Davis

4-p=1mod4
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Distinct residues of
T h a n k YOU l Lucas polynomials

over Fp,

Possible values for S7(L,) and Sxo(Lp) Litman — UC Davis
d| s | Si(Ln) d| 6 | S7(Ln)
21 2 1 6| 2 2
2| 4 1 6| 4 2 4-p=1mod4
218 -1 6| 8 0
2|16 1 6 | 16 2

d J 529(Ln) d J 529(Ln)

212 1 14| 2 1

2|16 1 14| 6 1

2 |10 1 14 | 10 1

2|30 0 14 | 30 0

44| 0  28[4| 1

4|12 0 28 | 12 1

4 |20 0 28 | 20 1

4 160 1 28 | 60 2
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