Consecutive Elements of Order n in $\mathbb{Z}/q\mathbb{Z}$

Thomas Brazelton¹, Joshua Harrington², Siddarth Kannan³, and Matthew Litman⁴

¹The Johns Hopkins University, ²Cedar Crest College, ³Pomona College, ⁴Penn State University

Introduction

- The subgroup structure of \mathbb{F}_q^{\times} , the cyclic group of units of \mathbb{F}_q , has been well-studied
- Little is known about the additive gaps between elements of the same multiplicative order

Research Question

Given n, can we guarantee that modulo some prime q we can find adjacent elements of order n?

- For prime q > n, an element $\alpha \in \mathbb{Z}/q\mathbb{Z}$ has order n if and only if α is a root of $\Phi_n(x)$ in $\mathbb{Z}/q\mathbb{Z}$
- α and $\alpha + 1$ are both of order n if and only if α is simultaneously a root of $\Phi_n(x)$ and $\Phi_n(x+1)$

Tools

Our work came from the study of the following concepts:

- Cyclotomic Polynomials
- Resultant of Polynomials
- Algebraic Integers and Norms
- Lucas & Mersenne Numbers

Example: Z/11Z

Consider the group of units, $(\mathbb{Z}/11\mathbb{Z})^{\times}$,

\boldsymbol{x}	1	2	3	4	5	6	7	8	9	10
$\operatorname{ord}(x)$	1	10	5	5	5	10	10	10	5	2

where the order of x, $\operatorname{ord}(x)$, is the smallest positive integer k such that $x^k \equiv 1 \pmod{q}$.

Here, 3 and 4 are consecutive primitive 5th roots of unity, and 6 and 7 are consecutive primitive 10th roots of unity.

Main Theorem

There exists a prime q such that $\mathbb{Z}/q\mathbb{Z}$ contains consecutive primitive nth roots of unity if and only if $n \neq 1, 2, 3, 6$.

- This is equivalent to showing that there exists a prime $q \equiv 1 \pmod{n}$ dividing the resultant of the cyclotomic polynomials.
- One shows the existence of these primes by factoring the resultant into norms of algebraic integers, and then analyzing the Lucas and Mersenne divisors which arise.

Interesting Corollaries & Propositions

- For q prime, $\mathbb{Z}/q\mathbb{Z}$ has adjacent elements of odd order n if and only if $\mathbb{Z}/q\mathbb{Z}$ contains adjacent elements of order 2n
- There does not exist a finite field $\mathbb{Z}/q\mathbb{Z}$ with two adjacent primitive 6th roots of unity
- The number of fields for which two consecutive elements of order n can exist is less than or equal to $\varphi(n)^2 \frac{\log(3)}{\log(n+1)}$

Conclusion

We have succeeded in showing that for any $n \neq 1, 2, 3, 6$, we can produce a prime q > n so that there is an element $\alpha \in \mathbb{F}_q$ where both α and $\alpha + 1$ are primitive nth roots of unity. Additionally, we have bounded the number of such q.

Conjectures

- For $n \neq 1, 2, 3, 6$, all primes q > n dividing Γ_n satisfy $q \equiv 1 \pmod{n}$
- Let $n \neq 1, 2, 3, 6$, and let q be a prime. Whenever α and $\alpha + 1$ are primitive nth roots of unity in a finite field \mathbb{F}_{q^r} where q > n, we have $\alpha \in \mathbb{F}_q$.

Acknowledgments

- National Science Foundation
 (grant DMS-1560019)
- Muhlenberg College

