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Outline of the Talk

Introduce G, and a Conjecture on Markoff mod p Connectivity
A Lower Bound for Connectivity of G,

Introduce Maximal Divisors My(n)

A Better Lower Bound from My(n)
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——
Markoff Triples — What Are They?

A Markoff triple (x,y, z) is a non-negative integer triple satisfying
the Markoff equation

M :x?+y? + 22 = 3xyz

A coordinate of a triple is called a Markoff number.
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——
Markoff Triples — What Are They?

A Markoff triple (x,y, z) is a non-negative integer triple satisfying
the Markoff equation

M :x?+y? + 22 = 3xyz

A coordinate of a triple is called a Markoff number.

m First introduced by A. Markoff in 1879 in constructing rational
approximations by continued fraction expansions

m Zagier (1982) showed that the number of Markoff triples with
x<y<z<TasT — oo grows like

C(log(T))? + O(log(T) log(log(T))?)
with C ~ 0.180717047
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-
Orbit Structure of Markoff Triples

There are three involutions acting on M(Z) (Vieta moves):

Rl(XayaZ) = (3yZ —X,y,Z), RQ(vaaZ) = (X73XZ —y,Z),
R3(X,y,2) = (X,_y,3X_y - Z)
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Orbit Structure of Markoff Triples

There are three involutions acting on M(Z) (Vieta moves):

Rl(XayaZ) = (3yZ —X,y,Z), RQ(vaaZ) = (X73XZ —y,Z),
Rs(x,y,z) = (x,y,3xy — 2)
Markoff showed that under the action of the Ry, R, R3, M(Z)

consists of two orbits, one “small” (solely (0,0,0)) and one “large”
(generated by (1,1,1))
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Rl(XayaZ) = (3yZ —X,y,Z), RQ(vaaZ) = (X73XZ —y,Z),
R3(X,y,2) = (X,_y,3X_y - Z)

Markoff showed that under the action of the Ry, R, R3, M(Z)
consists of two orbits, one “small” (solely (0,0,0)) and one “large”
(generated by (1,1,1))
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-
Markoff Graph mod p

Consider the graph G, where vertices are given by non-(0, 0, 0)
solutions to M(F,) and an edge exists between two vertices if they
are related by a Vieta involution.

Figure: The Markoff mod-p graphs G, for p =3, 5, and 7.
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Strong Approximation for G,

Conjecture (Strong Approximation Conjecture, Baragar (1991))

The projection map p : M(Z) — G, is surjective, or equivalently,
the Markoff mod p graphs are connected for all primes p.
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Strong Approximation for G,

Conjecture (Strong Approximation Conjecture, Baragar (1991))

The projection map m, : M(Z) — Gy is surjective, or equivalently,
the Markoff mod p graphs are connected for all primes p.

Theorem (Bourgain-Gamburd-Sarnak (2016))

If B is the set of primes p for which strong approximation fails, then

|IBN[0, T]| < T° for any £ > 0.
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Strong Approximation for G,

Conjecture (Strong Approximation Conjecture, Baragar (1991))

The projection map m, : M(Z) — Gy is surjective, or equivalently,
the Markoff mod p graphs are connected for all primes p.

Theorem (Bourgain-Gamburd-Sarnak (2016))

If B is the set of primes p for which strong approximation fails, then

|IBN[0, T]| < T° for any £ > 0.

Theorem (Chen (2022))
There exists a prime py such that for all p > pg, G, is connected.
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What is Known About Connectivity of G, and py?

m Strong Approximation Conjecture is equivalent to pg = 2
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What is Known About Connectivity of G, and py?

Strong Approximation Conjecture is equivalent to pg = 2

m Chen (2022) showed that the size of any connected
component of G, is divisible by p (strengthened to 4p)

m de Courcy-Ireland and Lee (2020) showed that G, is
connected for p < 3000

m Brown (2023/24) verified connectivity for p < 1,000,000 (to

be talked about later today)

m Eddy-Fuchs-L.—Martin—Tripeny (2023) showed that
po < 3.448 x 10392 (to be talked about now)

The window from 10° to 1032 has yet to be filled in!
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A Preliminary Bound

Proposition (Eddy—Fuchs—L.-Martin—Tripeny ('23))

Gy is connected for all primes p > 10%%2.
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A Preliminary Bound

Proposition (Eddy—Fuchs—L.-Martin—Tripeny ('23))

Gy is connected for all primes p > 10%%2.

We will outline how this result is obtained to illuminate the general
strategy for our stronger result
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——
Parametrizing Markoff Triples

— A triple (a, b, c) € Fp, with a # 0, :t% solves x2 + y? + z2 = 3xyz
if and only if it is of the form

o (r+r Y (s+sTY) (r+rY)(s+rtsTh
r+r -, )
r—r-1 r—r-1

X
for some r,s € sz'
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Parametrizing Markoff Triples

— A triple (a, b, c) € Fp, with a # 0, :t% solves x2 + y? + z2 = 3xyz
if and only if it is of the form

o (r+r Y (s+sTY) (r+rY)(s+rtsTh
r+r -, )
r—r-1 r—r-1

for some r,s € F*,.
— The orbit of this triple under R and R3 consists precisely of
triples of the form

<r+r1 (r+r_1)(r2”s+r_2”s_1) (r+r—l)(an:tls+r2n:tls—1))

)

r—r-1 r—r-1
for some n€ Z
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Order of a Triple and the Cage

m The Order of Markoff mod p triple (a, b, ¢), denoted
Ord((a, b, c)), is

max(ordp(a), ord,(b), ordy(c))

where ordp(a) is the multiplicative order of r in F’, and
p

a=r+rt
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m The Order of Markoff mod p triple (a, b, ¢), denoted
Ord((a, b, c)), is

max(ordp(a), ord,(b), ordy(c))

where ord,(a) is the multiplicative order of r in F*, and
p p
a=r+rt

m Define the Cage C, to be the connected component in G, of
triples of maximal order
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Order of a Triple and the Cage

m The Order of Markoff mod p triple (a, b, ¢), denoted
Ord((a, b, c)), is

max(ordp(a), ord,(b), ordy(c))

where ord,(a) is the multiplicative order of r in F*, and
p p
a=r+rt

m Define the Cage C, to be the connected component in G, of
triples of maximal order

To show connectivity, it suffices to show G,\Cp, is empty (which by
Chen has size divisible by p)
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Connectivity Proof Sketch

m Suppose (a, b, ¢) is not in the Cage and is of maximal Order d
among all non-Cage elements, with a the coordinate of order d
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Connectivity Proof Sketch

m Suppose (a, b, ¢) is not in the Cage and is of maximal Order d
among all non-Cage elements, with a the coordinate of order d
m This triple is connected to those whose other entries are of
(r+r=Y)(sr"+(sr")
1

r—r—

-1
the form ) for some n
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Connectivity Proof Sketch

m Suppose (a, b, ¢) is not in the Cage and is of maximal Order d
among all non-Cage elements, with a the coordinate of order d
m This triple is connected to those whose other entries are of
(r+r=Y)(sr"+(sr")
1

r—r—

-1
the form ) for some n

m Since d is maximal, the order of (r+r_1)r(ir:fl(5’n)_1) =f+f!

(call it d’) must satisfy d’ < d, d'|p+1
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Connectivity Proof Sketch

m Suppose (a, b, ¢) is not in the Cage and is of maximal Order d
among all non-Cage elements, with a the coordinate of order d
m This triple is connected to those whose other entries are of
(r+r=Y)(sr"+(sr")
1

r—r—

-1
the form ) for some n

m Since d is maximal, the order of (r+r_1)r(ir:fl(5’n)_1) =f+f!

(call it d’) must satisfy d’ < d, d'|p+1
m So our aim is to bound the number of possible exponents n
—1 n ny—1
for which ord (UL )y — o divides d

r—r—
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Bounding Solutions

Lemma (Eddy—Fuchs-L.—Martin—Tripeny ('23))

Ifr e IE‘;2 has order t > 2, then the number of congruence classes
n (mod t) for which ordy((r + r=1)(sr” + (sr")71)/(r — r71))
divides d is at most 3 max((6td)*/3, 4td/p).
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Lemma (Eddy—Fuchs-L.—Martin—Tripeny ('23))

Ifr e IE‘;2 has order t > 2, then the number of congruence classes

n (mod t) for which ordy((r + r=1)(sr” + (sr")71)/(r — r71))
divides d is at most 3 max((6td)*/3, 4td/p).

If we consider d to be the largest order of any element not in the
cage and T4 to be the number of divisors of p &= 1 which do not
exceed d, then
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Bounding Solutions

Lemma (Eddy—Fuchs-L.—Martin—Tripeny ('23))

Ifre F:z has order t > 2, then the number of congruence classes

n (mod t) for which ordy((r + r=1)(sr” + (sr")71)/(r — r71))
divides d is at most 3 max((6td)*/3, 4td/p).

If we consider d to be the largest order of any element not in the
cage and T4 to be the number of divisors of p &= 1 which do not
exceed d, then

Add’ T, 442
d< ) 3max((6dd’)1/3, dd> <34 max<(6d2)1/3, d> .
d'e€Ty 2 P 2 P
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Bounding Solutions

Lemma (Eddy—Fuchs-L.—Martin—Tripeny ('23))

Ifre F:z has order t > 2, then the number of congruence classes

n (mod t) for which ordy((r + r=1)(sr” + (sr")71)/(r — r71))
divides d is at most 3 max((6td)*/3, 4td/p).

If we consider d to be the largest order of any element not in the
cage and T4 to be the number of divisors of p &= 1 which do not
exceed d, then

4dd’ T 4d?
d< ) 3max((6dd’)1/3, dd> <34 max<(6d2)1/3, d> .
2 p 2 p
d'eTy
Considering both cases separately and rearranging yields...
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First Connectivity Criterion

Proposition (Eddy—Fuchs—L.—Martin—Tripeny ('23))

Let 74(n) denote the number of divisors of n that are < d. For d
dividingp—1orp+1, let Tg=714(p—1)+ 79(p+1). If no such
divisor satisfies either inequality
2,/2p 8173 p 8yp(pt1)r(p£1)
or

= <d< 2 ﬁ<d< CES)

(where the £ is + when d|p+ 1 and — if d|p — 1),
then G, is connected.
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First Connectivity Criterion

Proposition (Eddy—Fuchs—L.—Martin—Tripeny ('23))

Let 74(n) denote the number of divisors of n that are < d. For d
dividingp—1orp+1, let Tg=714(p—1)+ 79(p+1). If no such
divisor satisfies either inequality

2,/2p 8173 o P 8yp(pt1)r(p£1)

= <d< 2 ﬁ<d< CES)

(where the £ is + when d|p+ 1 and — if d|p — 1),
then G, is connected.

Applying standard bounds for 7 and ¢ yields our 10%3? bound
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Maximal Divisors

Definition

For a natural number n and real ¢, let My(n) denote the set of
divisors d of n less than or equal to ¢ such that no other divisor d’
of n less than or equal to ¢ divides d

As ¢ increases, My(n) is constant between any two consecutive
divisors of n, so we only need to check My(n) at d|n
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Maximal Divisors

Definition

For a natural number n and real ¢, let My(n) denote the set of
divisors d of n less than or equal to ¢ such that no other divisor d’
of n less than or equal to ¢ divides d

As ¢ increases, My(n) is constant between any two consecutive
divisors of n, so we only need to check My(n) at d|n

* In our previous sum, we can replace all divisors of p 41 less than
d, T4, with M4(p £ 1) to lessen the overcounting of solutions x
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Updated Connectivity Criterion using Maximal Divisors

Theorem (Eddy—Fuchs-L.—Martin—Tripeny ('23))

For d dividing p—1 or p+1, let My = |[Mgy(p—1)|+|Ma(p+1)|.
If no such divisor satisfies either inequality
2,/2p 81M3 .P 8yp(pt1)r(p£1)

<d< —<d<
My a7 oMy o(p=1)

(where the + is determined by whether d divides p —1 or p+ 1),
then G, is connected.
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Updated Connectivity Criterion using Maximal Divisors

Theorem (Eddy—Fuchs-L.—Martin—Tripeny ('23))
For d dividing p—1 or p+1, let My = |[Mgy(p—1)|+|Ma(p+1)|.

If no such divisor satisfies either inequality

2,/2p e 81M3 o P 4= 8yp(pt1)r(p£1)
Md 4 6Md (b(p:i: 1)

(where the + is determined by whether d divides p —1 or p+ 1),
then G, is connected.

The first few primes for which this theorem guarantees connectivity
of G, are p = 3,7,101 and 1,327,363 (a gap on the order of 10°)
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A Bound on Maximal Divisors

Theorem (Eddy—Fuchs-L.—Martin-Tripeny ('23))

For any e >0, ifa € [e,1 — €] then

B 1 log n log n
log | M pa(n)| = |0g<aa(1 — a)l—a> log log n u O((Ioglog n)2> '

The implied constant depends only on .
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A Bound on Maximal Divisors

Theorem (Eddy—Fuchs-L.—Martin-Tripeny ('23))

For any e >0, ifa € [e,1 — €] then

- 1 log n _ logal
log | M pa(n)| = |0g<aa(1 — a)1a> log log n u O((Ioglog n)2> '

The implied constant depends only on €.

We can now apply this to our connectivity criterion to deduce the
following...
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A Stronger Bound on py from Maximal Divisors

G, is connected for all primes

p > 8634534 1347454332 ~ 3.448 - 10392

where n# denotes the product of primes less than or equal to n.
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A Stronger Bound on py from Maximal Divisors

Theorem

G, is connected for all primes
p > 8634534 1347454332 ~ 3.448 - 10392
where n# denotes the product of primes less than or equal to n.

p = 863#53#13#7#5#332% — 1471 is the largest prime for which
we do not know if G, is connected.
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Testing for Smaller Values of 10”

n | q10000(10") | r10000(10") n | g10000(10”) | r10000(10”)
8 20.22% 38.12% 22 100% 100%
9 49.04% 67.46% 23 100% 100%
10 76.41% 87.05% 24 100% 100%
11 90.78% 95.33% 25 100% 100%
12 97.10% 98.29% 26 100% 100%
13 98.65% 99.11% 27 100% 100%
14 99.44% 99.52% 28 100% 100%
15 99.74% 99.83% 29 100% 100%
16 99.88% 99.88% 30 100% 100%
17 99.93% 99.95% 31 100% 100%
18 99.97% 100% 32 100% 100%
19 99.97% 99.97% 33 100% 100%
20 99.97% 100% 34 100% 100%
21 99.99% 99.99% 35 100% 100%

gm(10") = the percentage of the first m primes after 10" for which the
Connectivity Criterion guarantees connectivity of G,

rm(10") = the percentage of m random primes between 10" and 10™™ for
which the Connectivity Criterion guarantees connectivity of G,.
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e
Thank You!
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Plot of [Mg.(n)| as i ranges from 1 to the number of divisors of
n = 323232323232323232
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