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Chapter 1: Systems of linear equations

Linear equations

First example: a linear equation in two variables

Consider the equation

This is an equation in two variables, or indeterminates,  and .

A solution of this equation is a pair of numbers  so that if we replace  with  and replace  with ,
then the equation becomes true.

In other words, so that  really is equal to .

 is not a solution, because 
 is a solution, because 

Other solutions include , , , , , …

We can't make a complete list of all solutions, since there are infinitely many solutions in . However, we can draw
the set of all solutions as a subset of . This turns out to be a straight line:

We say that the equation  is a linear equation in two variables.

Definition

If  are any fixed numbers, then equation

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=variable
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=indeterminate
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=solution
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=linear_equation_in_two_variables


is a linear equation in two variables.

When you draw the set of all solutions of a linear equation in two variables, you always get a straight line in the -
plane.

More examples of linear equations in two variables
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Linear equations in 3 variables

Definition

If  are any fixed numbers, then equation

is a linear equation in 3 variables.

When you draw the set of all solutions of a linear equation in 3 variables, you always get a plane in 3-dimensional space, .

Examples

Note: you can view the examples below from different angles, by clicking the “Rotate 3D graphics view” button.

 

 This may be viewed as a linear equation in 3 variables, since it is equivalent to . 

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start


, viewed as the equation  

This plane is horizontal (parallel to the -  plane).

Linear equations (in general)

A linear equation in  variables (where  is some natural number [https://en.wikipedia.org/wiki/natural number]) is an equation of the form

where  and  are fixed numbers (called coefficients) and  are variables.

Example

https://en.wikipedia.org/wiki/natural%20number
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=variable


is a linear equation in 4 variables.

A typical solution will be a point  so that  really does equal .
For example,  is a solution.
The set of all solutions is a 3-dimensional object in , called a hyperplane [https://en.wikipedia.org/wiki/hyperplane].
Since we can't draw pictures in 4-dimensional space  we can't draw this set of solutions!

Systems of linear equations

A system of linear equations is just a list of several linear equations. By a solution of the system, we mean a common solution of each equation in
the system.

Example

Find the line of intersection of the two planes

and

Just to get an idea of what's going on, here's a picture of the two planes:

To find the equation of the line of intersection, we must find the points which are solutions of both equations at the same time. Eliminating
variables, we get

which tells us that for any value of , the point

is a typical point in the line of intersection.
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Let's look at the example from the end of Lecture 2 more closely:

We find the solutions of this system by applying operations to the system to make a new system, aiming to end up
with a very simple sort of system where we can see the solutions easily.

First replace equation (2) with . We'll call the resulting equations (1) and (2) again, although of
course we end up with a different system of linear equations:

Now replace equation (1) with :

Notice that we can now easily rearrange (1) to find  in terms of , and we can rearrange (2) to find  in terms of .
Since  can take any value, we write  where  is a “free parameter” (which means  can be any real number, or

).

We can also write this in so-called “vector form”:

This is the equation of the line where the two planes described by the original equations (1) and (2) intersect.

Note for each different value of , we get a different solutions (that is, a different point on the line of intersection).
For example, setting  we see that  is a solution; setting , we see that 

 is another solution, and so on. This works for any
value , and every solution may be written in this way.

Observations

1. The operations we applied to the original linear system don't change the set of solutions. This is because each
operation is reversible.

2. Writing out the variables  each time is unnecessary. If we erase the variables from the system

and write all the numbers in a grid, or a matrix, we get:

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=lecture_2
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=system_of_linear_equations


Notice that the first column corresponds to the  variable, the second to , the third to  and the numbers in the final
column are the right hand sides of the equations. Each row corresponds to one equation. So instead of performing
operations on equations, we can perform operations on the rows of this matrix:

Now we translate this back into equations to solve:

so

This sort of thing works in general: we can take any system of linear equations, write down a corresponding matrix,
perform certain reversible operations on the rows of this matrix to get a new matrix, and then write down a new
system of linear equations with the same solutions as the original system. If we do things in a sensible way then the
new system will be easy to solve, so we'll be able to solve the original system (since the solution set is the same).

Let's give some terminology which will allow us to make this process clear.

The augmented matrix of a system of linear equations

Definition

Given a system of linear equations:

its augmented matrix is

The numbers in this matrix are called the entries of the matrix. We can be a bit more precise: the number in row 

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=system_of_linear_equations


and column  is called the  entry of the matrix.

Example

To find the augmented matrix of the linear system

notice that we can rewrite it as

so the augmented matrix is

the  entry of this matrix is ;
the  entry is ;
the  entry is ;
the  entry is undefined (since this matrix does not have a th row).

Elementary operations on a system of linear equations

If we perform one of the following operations on a system of linear equations:

1. list the equations in a different order; or
2. multiply one of the equations by a non-zero real number; or
3. replace equation  by “equation    (equation )”, where  is a non-zero real number,

then the new system will have exactly the same solutions as the original system. These are called elementary
operations on the linear system.

Why do elementary operations leave the solutions of systems unchanged?

we are doing the same thing to the left hand side and the right hand side of each equation, so any solution to
the original system will also be a solution to the new system; and
these operations are reversible, using operations of the same type, so any solution to the new system will also
be a solution to the original system.

Elementary row operations on a matrix

Recall that when we form the augmented matrix of a linear system, each equation in the system becomes a row of
the matrix. So we can translate the elementary operations on the linear system into corresponding operations on the
rows of the matrix. We get three different types:

1. change the order of the rows of the matrix;
2. multiply one of the rows of the matrix by a non-zero real number;
3. replace row  by “row    (row )”, where  is a non-zero real number and .



The system of linear equations corresponding to these matrices will then have exactly the same solutions.

We call these operations elementary row operations or EROs on the matrix.

Example

Use EROs to find the intersection of the planes

Solution 1

So

from the last row, we get 
from the second row, we get , so , so 
from the first row, we get , so , so 

The conclusion is that

is the only solution.
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Example

Use EROs to find the intersection of the planes

Solution 1

So

from the last row, we get 
from the second row, we get , so , so 
from the first row, we get , so , so 

The conclusion is that

is the only solution.

Solution 2

We start in the same way, but by performing more EROs we make the algebra at the end simpler.

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=eros
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So

from the last row, we get 
from the second row, we get 
from the first row, we get 

The conclusion is again that

is the only solution.

Discussion

In both of these solutions we used EROs to transform the augmented matrix into a nice form.

In solution 1, we ended up with the matrix  which has a staircase pattern, with zeros below the

staircase, and 1s just above the “steps” of the staircase. This is an example of a matrix in row echelon form
(see below). We needed a bit of easy algebra, called back substitution, to finish off the solution. (Why is it
called echelon form? It seems that this word has an archaic meaning
[http://dictionary.reference.com/browse/echelon] which is relevant to the staircase-like pattern: “any structure or
group of structures arranged in a steplike form.”)

In solution 2, we ended up with the matrix  which has a staircase pattern with zeros below the

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=augmented_matrix
http://dictionary.reference.com/browse/echelon


staircase and 1s just above the “steps” of the staircase, and the additional property that we only have zeros
above the 1s on the steps. This is an example of a matrix in reduced row echelon form (see below). Finding
the solution from this matrix needed no extra algebra.

Row echelon form and reduced row echelon form

Row echelon form (REF)

Definition

A row of a matrix is a zero row if it contains only zeros. For example,  is a zero row.

A row of a matrix is non-zero, or a non-zero row if contains at least one entry that is not . For example 
 is non-zero, and so is .

Definition

The leading entry of a non-zero row of a matrix is the leftmost entry which is not .

For example, the leading entry of the row  is .

Definition

A matrix is in row echelon form, or REF, if it has all of the following three properties:

1. The zero rows of the matrix (if any) are all at the bottom of the matrix.
2. In every non-zero row of the matrix, the leading entry is .
3. If row  and row  are both non-zero, then the leading entry in row  is to the right of the

leading entry in row .  
In other words, as you go down the rows, the leading entries must go to the right.

For example,  and  are both in REF, but

1.  and  are not in REF, since they each have a zero row which isn't at the bottom;

2.  is not in REF, since the leading entry on the second row isn't ;

3.  is not in REF, since the leading entry in row  is not to the right of the leading entry in row .

Reduced row echelon form (RREF)

Definition

A matrix is in reduced row echelon form or RREF if it is in row echelon form (REF), so that

1. The zero rows of the matrix (if any) are all at the bottom of the matrix.
2. In every non-zero row of the matrix, the leading entry is .
3. If row  and row  are both non-zero, then the leading entry in row  is to the right of the

leading entry in row .  
In other words, as you go down the rows, the leading entries must go to the right.



and the matrix also has the property:

4. If a column contains the leading entry of a row, then every other entry in that column is .

For example,

are both in REF, but they are not in RREF because the red entries are non-zero and are in the same column as a
leading entry (in blue).

On the other hand,

is in RREF.

Example

Use EROs to put the following matrix into RREF:

and solve the corresponding linear system.

Solution

This matrix is in RREF. Write  for the variable corresponding to the th column. The solution is

1. , a free parameter, i.e. . This is because the th column does not contain a leading entry.
2. From row 3: , so 
3. From row 2: , so 
4. From row 1: 

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=eros
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So the solution is

(Geometrically, this is a line in 4-dimensional space ).
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Solving a system in REF or RREF

Given an augmented matrix in REF (or RREF), each column except the last column corresponds to a variable. These
come in two types:

leading variables are variables whose column contains the leading entry of some row;
free variables are all the other variables.

Example

For the augmented matrix

which is in REF, if we use the variables  then

,  and  are leading variables, since the corresponding columns have a leading entry
 and  are free variables, since the corresponding columns do not have a leading entry

To solve such a linear system, we use the following procedure:

1. assign a free parameter (a letter like  representing some arbitrary real number) to each free variable
2. starting at the bottom of the matrix, write out each row and rearrange it to give an equation for its leading

variable, substituting the other variables as needed.

In the example above, this gives:

1.  and  are free, so set  where  and  where 
2. Working from the bottom:

So

where  and  are free parameters, i.e. .

Writing this solution in vector form gives:

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=ref
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Note that the solution set is a subset of , which is -dimensional space; and the solution set is -dimensional,
because there are  free parameters.

Gaussian elimination

We've seen that putting a matrix into REF (or even better, in RREF) makes it easier to solve equations.

Aim: put any matrix into REF using EROs.

Algorithm

1. Re-order the rows so that the leftmost leading entry in the matrix is in the top row.
2. Divide all of the top row by its leading entry, so that this entry becomes a .
3. “Pivot about the leading 1”: subtract multiples of the top row from each row below so that all entries below

the leading  in the top row become .
4. Go back to the start, ignoring the top row (until no rows remain, except possibly zero rows).

If we want, we can go further and put the matrix into RREF. First put it into REF as above, and then:

1. Look at the non-zero row nearest the bottom of the matrix
2. Pivot about the leading  in that row and use it to make zeros above: subtract multiples of that row from each

row above
3. Move to the next row up, and go to step 2 (until no rows remain).

Example

Use Gaussian elimination to solve the linear system

Solution 1

We put the augmented matrix into REF:

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=ref
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=eros
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=leading_entry
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=rref
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This is in REF. There are leading entries in the columns for  but not for , so  is a free variable (where
). Now

So

Solution 2

We put the augmented matrix into RREF.



This is in RREF. There are leading entries in the columns for  but not for , so  is a free variable
(where ). Now

So

Example

A function  has the form

where  are constants. Given that ,  and , find .

Solution

We get a system of three linear equations in the variables :

Let's reduce the augmented matrix for this system to RREF.



So ,  and ; so
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Examples

Example 1

Solve the linear system

by transforming the augmented matrix into reduced row echelon form.

Solution

The solution is , , . So there is a unique solution: just one point in , namely .

Example 2

Solve the linear system

Solution

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=augmented_matrix
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=reduced_row_echelon_form


This is in REF. The last row corresponds to the equation

which clearly has no solution! We conclude that this system has no solutions, and hence the original linear system has no solutions either.

A linear system with no solutions is called inconsistent.

We can detect an inconsistent linear system, since whenever we apply EROs to put the augmented matrix into REF, we will get a row of the
form  where  is non-zero.

Example 3

For which value(s) of  does the following linear system have infinitely many solutions?

Solution

If , then this matrix is in REF:

In this situation,  is a free variable (since there's no leading entry in the third column). For each value of  we get a different solution, so if 
, or equivalently, if , then there are infinitely many different solutions.

If , then we can divide the third row by  to get the REF:

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=ref
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=eros
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In this situtation, there are no free variables since ,  and  are all leading variables. So if , or equivalently if , then there
are no free variables so there is not an infinite number of solutions. (The only possibilities are that there is is a unique solution or that the
system is inconsistent; and in this case you can check that there is a unique solution, although we don't need to know this to answer the
question).

In conclusion, the system has infinitely many solutions if and only if .

Observations about Gaussian elimination

We know that we can apply EROs to any augmented matrix into REF.

Suppose the system has  equations and  variables, and let  be the number of non-zero rows in REF. Also suppose the system is
consistent: then the REF has no row of the form .

, because there are only  rows in the whole matrix
 is precisely the number of leading variables. So  is no bigger , the total number of variables; in symbols, we have .

All the other variables are free variables, so

What does this tell us about the set of solutions? For example, how many solutions are there?

Observation 1: free variables and the number of solutions

For consistent systems, this shows that:

either ;
so 
there are no free variables
the system has one solution and no more
We say it has a unique solution.

or 
so 
there is at least one free variable
so the system has infinitely many solutions (one for each value of each free variable)
The number of free variables, , is called the dimension [https://en.wikipedia.org/wiki/dimension] of the solution set.

Observation 2: systems with fewer equations than variables

For consistent systems where  (fewer equations than variables):

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=eros
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=ref
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https://en.wikipedia.org/wiki/dimension


, so .
So there is at least one free variable.
So in this situation we always have infinitely many solutions.

Chapter 2: The algebra of matrices
Definition

An  matrix is a grid of numbers with  rows and  columns:

The  entry of a matrix  is , the number in row  and column  of .

Example

If , then  is a  matrix, and the  entry of  is , the  entry of  is , the 

 entry is , etc.
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Examples

 is a  matrix. A matrix like this with one column is called a column vector.

 is a  matrix. A matrix like this with one row is called a row vector.

Even though the row matrix and the column matrix above have the same entries, they have a different “shape”, or
“size”, so we must think of them has being different matrices. Let's give the definitions to make this precise.

Definition

Two matrices  and  have the same size if they have the same number of rows, and they have the same number of
columns.

If two matrices do not have the same size, we say they have different sizes.

Definition

Two matrices  and  are said to be equal if both of the following conditions hold:

 and  have the same size; and
every entry of  is equal to the corresponding entry of ; in other words, for every  so that  and 
have an  entry, we have .

When  and  are equal matrices, we write . Otherwise, we write .

Examples

, since these matrices have different sizes: the first is  but the

second is .

 since these matrices are not the same size.

 because even though they have the same size, the  entries are different.

If  then we know that all the corresponding entries are equal, so we

get four equations:

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start


Operations on matrices

We want to define operations on matrices: some (useful) ways of taking two matrices and making a new matrix.

Before we begin, a remark about  matrices. These are of the form  where  is just a number. The
square brackets  don't really matter here; they just keep the inside of a matrix in one place. So really: a 
matrix is just a number. This means that special cases of the operations we define will be operations on ordinary
numbers. You should check that in the special case when all the matrices involved are  matrices, the
operations become the ordinary operations on numbers, so we are generalising the familiar operations (addition,
subtraction, multiplication and so on) from numbers to matrices.

Matrix addition and subtraction

Definition of matrix addition

If  and  are matrices of the same size, then  is defined to be the matrix with the same size as  and  so
that the  entry of  is , for every .

If  and  are matrices of different sizes, then  is undefined.

Example

Example

Remarks

1. For any matrices  and  with the same size: . We say that matrix addition is
commutative.

2. For any matrices ,  and  with the same size: . We say that matrix
addition is associative.

Definition of the zero matrix

The  zero matrix is the  matrix so that every entry is . We write this as . So

where this matrix has  rows and  columns.



Exercise

Show that if  is any  matrix, then

Remember that when checking that matrices are equal, you have to check that they have the same size, and that all
the entries are the same.

Definition of matrix subtraction

If  and  are matrices of the same size, then  is defined to be the matrix with the same size as  and  so
that the  entry of  is , for every .

If  and  are matrices of different sizes, then  is undefined.

Example

Example

Scalar multiplication

Definition of a scalar

In linear algebra, a scalar is just a fancy name for a number (in this course: a real number). The reason is that
numbers are often used for scaling things up or down; for example, the scalar  is often used to scale things up by a
factor of  (by multiplying by ).

Definition of scalar multiplication of matrices

If  is a real number and  is an  matrix, then we define the matrix  to be the  matrix given by
multiplying every entry of  by . In other words, the  entry of  is .

Example

If , then . In other words,

The negative of a matrix

We write  as a shorthand for ; so the  entry of  is . For example,



Exercise

Prove that  for any matrices  and  of the same size.

Row-column multiplication

Definition of row-column multiplication

If  is a  row vector and  is an  column vector, then the row-

column product, or simply the product of  and  is defined to be

If we want to emphasize that we are multiplying in this way, we sometimes write  instead of .

The product  of a  row vector  with an  column vector  is undefined if .

Examples

.

 is not defined.

.

Generalising the previous example: if  and , then 

. So we can write any linear equation 
 as a shorter matrix equation: .

Matrix multiplication

This generalises row-column multiplication. The idea is that you build a new matrix from all possible row-column
products. The formal definition will appear later, but here's an example:

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=linear_equation
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Definition of matrix multiplication

If  is an  matrix and  is an  matrix, then the product  is the  matrix whose  entry
is the row-column product of the th row of  with the th column of . That is:

If we want to emphasize that we are multiplying matrices in this way, we might sometimes write  instead of 
.

If  is an  matrix and  is an  matrix with , then the matrix product  is undefined.

Examples

1. If  and , then  and .

Note that  and  are both defined, but  since  and  don't even have the same size.

2. If ,  and , then  is ,  is  and 

is , so
,  and  don't exist (i.e., they are undefined);
 exists and is ;
 exists and is ; and
 exists and is .

In particular,  and  and , since in each case one of the matrices
doesn't exist.

3. If  and , then  and . So  and  are

both defined and have the same size, but they are not equal matrices: .

4. If  and , then  and . So  in

this case.
5. If  is the  zero matrix and  is any  matrix, then  and .

So in this case, we do have .

6. If  and , then , so  for these

particular matrices  and .

7. If  and , then  and , so 

.

Commuting matrices

We say that matrices  and  commute if .
Typesetting math: 100%
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Which matrices commute? Suppose  is an  matrix and  is an  matrix, and  and  commute, i.e., 
.

 must be defined, so 
 must be defined, so 
 is an  matrix and  is an  matrix. Since  has the same size as , we must have 

 and .

Putting this together: we see that if  and  commute, then  and  must both be  matrices for some
number . In other words, they must be square matrices of the same size.

Examples 4 and 5 above show that for some square matrices  and  of the same size, it is true that  and 
commute. On the other hand, examples 3 and 6 show that it's not true that square matrices of the same size must
always commute.

Because it's not true in general that , we say that matrix multiplication is not commutative.

Definition of the  identity matrix

The  identity matrix is the  matrix  with s in every diagonal entry (that is, in the  entry for
every  between  and ), and s in every other entry. So

Examples

1. 

2. 

3. 

4. , and so on!

Proposition: properties of 

1.  for any  matrix ;
2.  for any  matrix ; and
3.  for any  matrix . In particular,  commutes with every other square 

matrix .

Proof of the proposition

1. We want to show that  for any  matrix . These matrices the same size, since  has size 
 and  has size , so  has size  by the definition of matrix multiplication, which is the

same as the size of .

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=same_size
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=matrix_multiplication


Note that , where the  is in the th place, by definition of the identity matrix 

; and the th column of  is . The (i,j) entry of  is , by the definition of matrix

multiplication, which is therefore

So the matrices  and  have the same size, and the same  entries, for any . So .
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Proof of the proposition, continued

2. To show that  for any  matrix  is similar to the first part of the proof; the details are left as an
exercise.

3. If  is any  matrix, then  by part 1 and  by part 2, so . In
particular,  so  commutes with , for every square  matrix . ■

Algebraic properties of matrix multiplication

The associative law

Proposition: associativity of matrix multiplication

Matrix multiplication is associative. This means that  whenever  are matrices which
can be multiplied together in this order.

We omit the proof, but this is not terribly difficult; it is a calculation in which you write down two formulae for the 
 entries of  and , and carefully check they are equal using the fact that if  are real

numbers, then .

Example

We saw above that  commutes with . We can explain why this is so using

associativity. You can check that  (which we usually write as ). Hence, using associativity at ,

The same argument for any square matrix  gives a proof of:

Proposition

If  is any square matrix, then  commutes with .■

The powers of a square matrix  are defined by , and  for . Using mathematical
induction [https://en.wikipedia.org/wiki/mathematical induction], you can prove the following more general proposition.

Proposition: a square matrix commutes with its powers

If  is any square matrix and , then  commutes with .■

The distributive laws

Lemma: the distributive laws for row-column multiplication

1. If  is a  row vector and  and  are  column vectors, then .

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start
https://en.wikipedia.org/wiki/mathematical%20induction


2. If  and  are  row vectors and  is an  column vector, then .

The proof is an exercise (see tutorial worksheet 5).

Proposition: the distributive laws for matrix multiplication

If  is an  matrix and , then:

1.  for any  matrices  and ; and
2.  for any  matrices  and .

In other words,  whenever the matrix products make sense, and similarly 
 whenever this makes sense.

Proof

1. First note that

 and  are both , so  is  by the definition of matrix addition;
 is  and  is , so  is  by the definition of matrix multiplication;

 and  are both  by the definition of matrix multiplication
so  is  by the definition of matrix addition.

So we have (rather long-windedly) checked that  and  have the same size.

By the Lemma above, the row-column product has the property that

So the  entry of  is

On the other hand,

the  entry of  is ; and
the  entry of  is ;
so the  entry of  is also .

So the entries of  and  are all equal, so .

2. The proof is similar, and is left as an exercise.■

Matrix equations

We've seen that a single linear equation can be written using row-column multiplication. For example,

can be written as

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=matrix_addition
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=matrix_multiplication
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=same_size
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=row-column_product
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or

where  and .

We can write a whole system of linear equations in a similar way, as a matrix equation using matrix multiplication.
For example we can rewrite the linear system

as

or

where ,  and . (We are writing the little arrow above the column

vectors here because otherwise we might get confused between the : a column vector of variables, and : just a
single variable).

More generally, any linear system

can be written in the form

where  is the  matrix, called the coefficient matrix of the linear system, whose  entry is  (the

number in front of  in the th equation of the system) and , and .

lecture_9.txt · Last modified: 2016/02/29 10:24 by rupert

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=system_of_linear_equations
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=matrix_multiplication


MST10030 notes wiki

More generally still, we might want to solve a matrix equation like

where ,  and  are matrices of any size, with  and  fixed matrices and  a matrix of unknown variables.
Because of the definition of matrix multiplication, if  is , we need  to be  for some , and then 
must be , so we know the size of any solution . But which  matrices  are solutions?

Example

If  and , then any solution  to  must be .

One solution is , since in this case we have .

However, this is not the only solution. For example,  is another solution, since in this case

So from this example, we see that a matrix equation can have many solutions.

Invertibility

We've seen that solving matrix equations  is useful, since they generalise systems of linear equations.

How can we solve them?

Example

Take  and , so we want to find all matrices  so that , or

Note that  must be a  matrix for this to work, by the definition of matrix multiplication. So one way to solve

this is to write  and plug it in:

and then equate entries to get four linear equations:

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=matrix_multiplication
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=matrix_multiplication


which we can solve in the usual way.

But this is a bit tedious! We will develop a slicker method by first thinking about solving ordinary equations 
where  are all numbers, or if you like,  matrices.

Solving  and 

If , then solving  where  are numbers is easy. We just divide both sides by , or equivalently,
we multiply both sides by , to get the solution: .

Why does this work? If , then

so  really is equal to , and we do have a solution to .

What is special about  which made this all work?

1. we have ,
2. and .

Now for an  matrix , we know that the identity matrix  does the same sort of thing as  is doing in the
relation : we have  for any  matrix . So instead of , we want to find a matrix  with the
property: . In fact, because matrix multiplication is not commutative, we also require that . It's
then easy to argue that  is a solution to , since

Example revisited

If , then the matrix  does have the property that

(You should check this!). So a solution to  where  is 

.

Notice that having found the matrix , then we can solve  easily for any  matrix : the answer is 



. This is quicker than having to solve four new linear equations using our more tedious method above.

Definition: invertible

An  matrix  is invertible if there exists an  matrix  so that

The matrix  is called an inverse of .

Examples

 is invertible, and the matrix  is an inverse of 

a  matrix  is invertible if and only if , and if  then an inverse of  is 
.

 is invertible for any , since , so an inverse of  is .
 is not invertible for any , since  for any  matrix , so .

 is not invertible, since for any  matrix  we have 

which is not equal to  since the  entries are not equal.

 is not invertible. We'll see why later!

Proposition: uniqueness of the inverse

If  is an invertible  matrix, then  has a unique inverse.

Proof

Suppose  and  are both inverses of . Then  and . So

So , whenever  and  are inverses of . So  has a unique inverse. ■

Definition/notation: 

If  is an invertible  matrix, then the unique  matrix  with  is called the inverse
of . If  is invertible, then we write  to mean the (unique) inverse of .

If a matrix  is not invertible, then  does not exist.

Warning

If  is a matrix then  doesn't make sense! You should never write this down. In particular,  definitely doesn't

mean .



Similarly, you should never write down  where  and  are matrices. This doesn't make sense either!

Examples revisited

 has . In other words, .

a  matrix  with  has .
.

 does not exist

 does not exist

 does not exist

lecture_10.txt · Last modified: 2016/03/01 10:52 by rupert



MST10030 notes wiki

Proposition: solving  when  is invertible

If  is an invertible  matrix and  is an  matrix, then the matrix equation

has a unique solution: .

Proof

First we check that  really is a solution to . To see this, note that if , then

Now we check that the solution is unique. If  and  are both solutions, then  and , so

Multiplying both sides on the left by , we get

So any two solutions are equal, so  has a unique solution. ■

Corollary

If  is an  matrix and there is a non-zero  matrix  so that , then  is not invertible.

Proof

Since  and , the equation  has (at least) two solutions: 
and . Since  is non-zero, these two solutions are different.

So there is not a unique solution to , for  the zero matrix. If  was invertible, this would contradict the
uniqueness statement of the last Proposition. So  cannot be invertible. ■

Examples

We can now see why the matrix  is not invertible. If  and , then  is

non-zero, but . So  is not invertible, by the Corollary.

 is not invertible, since  is non-zero and .

 matrices: determinants and invertibility

Question

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start


Question

Which  matrices are invertible? For the invertible matrices, can we find their inverse?

Lemma

If  and , then we have

where .

Proof

This is a calculation (done in the lectures; you should also check it yourself). ■

Definition: the determinant of a  matrix

The number  is called the determinant of the  matrix . We write 

for this number.

Theorem: the determinant determines the invertibility (and inverse) of a  matrix

Let  be a  matrix.

1.  is invertible if and only if .

2. If  is invertible, then .

Proof

If , then  and  is not invertible. So the statement is true is this special case.

Now assume that  and let .

By the previous lemma, we have

If , then multiplying this equation through by the scalar , we get

so if we write  to make this look simpler, then we obtain

so in this case  is invertible with inverse .

If , then  and  (since , and  is obtained from  by swapping two
entries and multiplying the others by ). Hence by the previous corollary,  is not invertible in this case. ■
Example



Example

Let's solve the matrix equation  for .

Write . Then  which isn't zero, so  is invertible.

And .

Hence the solution is .
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The transpose of a matrix
We defined this in tutorial sheet 4:

The transpose of an  matrix  is the  matrix  whose  entry is the  entry of . In other
words, to get  from , you write the rows of  as columns, and vice versa; equivalently, you reflect  in its
main diagonal.

For example,  and .

Exercise: simple properties of the transpose

Prove that for any matrix :

; and
 if  and  are matrices of the same size; and

 for any scalar .

In tutorial sheet 4, we proved:

Lemma: transposes and row-column multiplication

If  is a  row vector and  is an  column vector, then

Observation: the transpose swaps rows with columns

Formally, for any matrix  and any , we have

Theorem: the transpose reverses the order of matrix multiplication

If  and  are matrices and the matrix product  is defined, then  is also defined. Moreover, in this case
we have

Proof

If  is defined, then  is  and  is  for some , so  is  and  is , so 
 is defined. Moreover, in this case  is an  matrix, and  is an  matrix, so  is a 

 matrix. Hence  has the same size as . To show that they are equal, we calculate, using the fact

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=same_size
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=scalar
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=matrix_product


that the transpose swaps rows with columns:

Hence . ■

Determinants of  matrices
Given any  matrix , it is possible to define a number  (as a formula using the entries of ) so that

1. If  is a  matrix, say , then we just define .

2. If  is a  matrix, say , then we've seen that .

3. If  is a  matrix, say , then it turns out that 

.
4. If  is a  matrix, then the formula for  is more complicated still, with  terms.
5. If  is a  matrix, then the formula for  has  terms.

Trying to memorise a formula in every case (or even in the  case!) isn't convenient unless we understand it
somehow. We will approach this is several steps.

Step 1: minors

Definition

If  is an  matrix, then the  minor of  is defined to be the determinant of the 
matrix formed by removing row  and column  from . We will write this number as .

Examples

If , then , , , and .

If , then  and 

.

Step 2: cofactors

Definition

The  cofactor of an  matrix  is , where  is the (i,j) minor of .



Note that  is  or , and can looked up in the matrix of signs: . This

matrix starts with a  in the  entry (corresponding to ) and the signs then
alternate.

Examples

If , then , , 

, and .

If , then  and 

.

Step 3: the determinant of a  matrix using Laplace expansion along the first row

Definition

If  is a  matrix, then

Here  are the cofactors of .

This formula is called the Laplace expansion of  along the first row, since ,  and  make up the first
row of .

Example

From this, we can conclude that  is not invertible.
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Notation

To save having to write  all the time, we sometimes write the entries of a matrix inside vertical bars  to mean the determinant of that
matrix. Using this notation (and doing a few steps in our heads), we can rewrite the previous example as:

Step 4: the determinant of an  matrix

Definition

If  is an  matrix, then

Here  are the cofactors of .

This formula is called the Laplace expansion of  along the first row, since  make up the first row of .

Example

Theorem: Laplace expansion along any row or column gives the determinant

1. For any fixed :  (Laplace expansion along row )
2. For any fixed :  (Laplace expansion along column )

Example

We can make life easier by choosing expansion rows or columns with lots of zeros, if possible. Let's redo the previous example with this in
mind:

Definition: upper triangular matrices

An  matrix  is upper triangular if all the entries below the main diagonal are zero.
Definition: diagonal matrices

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=cofactor


Definition: diagonal matrices

An  matrix  is diagonal if the only non-zero entries are on its main diagonal.

Corollary: the determinant of upper triangular matrices and diagonal matrices

1. The determinant of an upper triangular  matrix is the product of its diagonal entries: .
2. The determinant of an  diagonal matrix is the product of its diagonal entries: .

Proof

1. This is true for , trivially. For , assume inductively that it is true for  matrices and use the Laplace
expansion of an upper triangular  matrix  along the first column of  to see that 

. Now  is the determinant of the  matrix formed by removing
the first row and and column of , and this matrix is upper triangular with diagonal entries . By our inductive
assumption, we have . So  as desired.

2. Any diagonal matrix is upper triangular, so this is a special case of statement 1. ■

Examples

1. For any , we have .
2. For any , we have .

3. .

Theorem: important properties of the determinant

Let  be an  matrix.

1.  is invertible if and only if .
2. 
3. If  is another  matrix, then 

Theorem: row/column operations and determinants

Let  be an  matrix, let  be a scalar and let .

 means  but with row  replaced by .

1. If , then  (swapping two rows changes the sign of det).
2.  (scaling one row scales  in the same way)
3.  (adding a multiple of one row to another row doesn't change )

Also, these properties all hold if you change “row” into “column” throughout.
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Corollary

If an  matrix  has two equal rows (or columns), then , and  is not invertible.

Proof

If  has two equal rows, row  and row , then  So , so 
, so .

If  has two equal columns, then  has two equal rows, so .

In either case, . So  is not invertible.■

Examples

Swapping two rows changes the sign, so .

Multiplying a row or a column by a constant multiplies the determinant by that constant, so

, so

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start


Hence

Corollary

If  for some  and some , then .

Proof

Note that . So  has a zero row, and by Laplace expansion along this
row we obtain . So .■

The effect of EROs on the determinant

We have now seen the effect of each of the three types of ERO on the determinant of a matrix:

1. swapping two rows of the matrix multiplies the determinant by . By swapping rows repeatedly, we are
able to shuffle the rows in an arbitrary fashion, and the determinant will either remain unchanged (if we used
an even number of swaps) or be multiplied by  (if we used an odd number of swaps).

2. multiplying one of the rows of the matrix by  multiplies the determinant by ; and
3. replacing row  by “row    (row )”, where  is a non-zero real number and  does not change

the determinant.

Moreover, since , this all applies equally to columns instead of rows.

We can use EROs to put a matrix into upper triangular form, and then finding the determinant is easy: just multiply
the diagonal entries together. We just have to keep track of how the determinant is changed by the EROs of types 1
and 2.

Example: using EROs to find the determinant

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=ero


Finding the inverse of an invertible  matrix

Definition: the adjoint of a square matrix

Let  be an  matrix. Recall that  is the  cofactor of . The matrix of cofactors of  is the 
matrix  whose  entry is .

The adjoint of  is the  matrix , the transpose of the matrix of cofactors.

Example: 

If , then , so the adjoint of  is .

Recall that ; we calculated this earlier when we looked at the inverse of a  matrix.
Hence for a  matrix , if , then .

Example: 

If , then the matrix of signs is , so

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=cofactor
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so the adjoint of  is
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Example: 

If , then the matrix of signs is , so

so the adjoint of  is

Observe that , and 

; and .

This is an illustration of the following theorem, whose proof is omitted:

Theorem: key property of the adjoint of a square matrix

If  is any  matrix and  is its adjoint, then .

Corollary: a formula for the inverse of a square matrix

If  is any  matrix with , then  is invertible and

where  is the adjoint of .

Proof

Divide the equation  by . ■

Example

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start
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If again we take , then  and , so  is

invertible and .

A more efficient way to find 

Given an  matrix , form the  matrix

and use EROs to put this matrix into RREF. One of two things can happen:

Either you get a row of the form  which starts with  zeros. You can then
conclude that  is not invertible.

Or you end up with a matrix of the form  for some  matrix . You can then conclude

that  is invertible, and .

Examples

Consider .

Conclusion:  is not invertible.

Consider .

Conclusion:  is invertible and .

Consider .

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=eros
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Conclusion:  is invertible, and .

Chapter 3: Vectors and geometry

Recall that a  column vector such as  is a pair of numbers written in a column. We are also used to

writing points in the plane  as a pair of numbersl; for example  is the point obtained by starting from the
origin, and moving  units to the right and  units up.

We think of a (column) vector like  as an instruction to move  units to the right and  units up. This

movement is called “translation by ”.

Examples



The vector  moves:

 to 
 to 

 to .

It is convenient to not be too fussy about the difference between a point like  and the vector . If we agree

to write points as column vectors, then we can perform algebra (addition, subtraction, scalar multiplication) as
discussed in Chapter 2, using points and column vectors.

For example, we could rewrite the examples above by saying that  moves:

 to 

 to 

 to .

More generally: a column vector  moves a point  to .
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Example

Which vector moves the point  to ?

Answer: we need a vector  with , so . We write 

, since this is the vector which moves  to .

Definition of 

If  and  are any points in , then the vector  is defined by

(where on the right hand side, we interpret the points as column vectors so we can subtract them to get a column
vector).

Thus  is the vector which moves the point  to the point .

Example

In , the points  and  have .

The uses of vectors

Vectors are used in geometry and science to represent quantities with both a magnitude (size/length) and a
direction. For example:

displacements (in geometry)
velocities
forces

Recall that a column vector moves points. Its magnitude, or length, is how far it moves points.

Definition: the length of a vector

If  is a column vector in , then its magnitude, or length, or norm, is the number

Examples

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start


Examples

Exercise

Prove that if  is a scalar and  is a vector in , then

That is, multiplying a vector by a scalar  scales its length by , the absolute value of .

Remark

 is the distance from point  to point , since this is the length of vector which takes point  to point .

Examples

The distance from  to  is 

.

The length of the main diagonal of the unit cube in  is the distance between  and 

, which is .

Scalar multiplication and direction

Multiplying a vector by a scalar changes its length, but doesn't change its direction.

Definition: unit vectors

A unit vector is a vector  with .

Proposition: finding a unit vector in the same direction as a given vector

If  is a non-zero vector, then  is a unit vector (in the same direction as ).

Proof

Using the formula  and the fact that , we have

So  is a unit vector, and since it's scalar multiple of , it's in the same direction as . ■

Example



What is unit vector in the same direction as ?

We have , so the proposition tells us that is 

 is a unit vector in the same direction as .

Addition of vectors

If , then  moves  to , so .

If , then  moves  to , so .

What about ? We have . So .

This gives us the triangle law for vector addition: ,  and  may be arranged to form a triangle:

We get another triangle by starting at  and translating first by  and then by ; the other side of this triangle is 
. But we know that ! So we can put these two triangles together to get the parallelogram

law for vector addition:



lecture_17.txt · Last modified: 2016/04/05 10:28 by rupert



MST10030 notes wiki

The dot product
Definition of the dot product

Let  and  be two (column) vectors in . The dot product of  and  is the real number

 given by

In other words,  is the row-column product  of the transpose of  with .

Note that while  and  are vectors, their dot product  is a scalar.

Example

If  and , then .

Properties of the dot product

For any vectors ,  and  in , and any scalar :

1.  (the dot product is commutative)
2. 
3. 
4. , and 

The proofs of these properties are exercises.

Angles and the dot product

Theorem: the relationship between angle and the dot product

If  and  are non-zero vectors in , then

where  is the angle between  and .

The proof will be given soon, but for now here is an example.

Example

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start
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If  and , then . On the other hand, we have 

, so the angle  between  and  satisfies

so , so , so  or  (measuring angles in radians). This tells us that the
angle between  and  is a right angle. We say that these vectors are orthogonal. We can draw a convincing picture
which indicates that these vectors are indeed at right angles:

Proof of the Theorem

We wish to show that  where  is the angle between  and .

Recall the cosine rule [https://en.wikipedia.org/wiki/cosine rule]:

Consider a triangle with two sides  and . By the triangle rule for vector addition, the third side  has 
, so :

https://en.wikipedia.org/wiki/cosine%20rule


Applying the cosine rule gives

On the other hand, we know that , so

So

Subtracting  from both sides and dividing by  gives . ■

Corollary

If  and  are non-zero vectors and  is the angle between them, then .

Corollary

If  and  are non-zero vectors with , then  and  are orthogonal: they are at right-angles.

Examples

1. The angle  between  and  has

so .
2. The points ,  and  are the vertices of a right-angled triangle. Indeed,

we have  and , so 

, so the sides  and  are at right-angles.



3. To find a unit vector orthogonal to the vector , we can first observe that  has 

, so  and  are orthogonal; and then consider the vector , which is a unit vector in

the same direction as , so is also orthogonal to . Hence  is a unit vector

orthogonal to .

The orthogonal projection of one vector onto another

Let  be a non-zero vector, and let  be any vector. We call a vector  the orthogonal projection of  onto , and
write , if

1.  is in the same direction as ; and
2. the vector  joining the end of  to the end of  is orthogonal to .

We can use these properties of  to find a formula for  in terms of  and .

1. Since  is in the same direction as , we have  for some scalar .
2. Since  is orthogonal to , we have . Hence

So

We call  the component of  orthogonal to .
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Example

If  and , then

and the component of  orthogonal to  is

The cross product of vectors in 

Definition: the standard basis vectors

We define ,  and . These are the standard basis vectors of .

Note that any vector  may be written as a linear combination of these vectors (that is, a sum of scalar

multiplies of ,  and ), since

Definition: the cross product

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start


Definition: the cross product

If  and  are vectors in , then we define  to be the vector given by the

determinant

We interpret this determinant by expanding along the first row:

Example

Let  and . We have

and

Observe that . Moreover,

and

Example: cross products of standard basis vectors

We have



Proposition: properties of the cross product

For any vectors ,  and  in  and any scalar , we have:

1. 
2. 
3. 

4. 

5. 
6.  is orthogonal to both  and 

Proof

1. This is a tedious (but easy) bit of algebra.
2. Swapping two rows in a determinant changes the sign, so

3. Scaling one row in a determinant scales the determinant in the same way, so

4. The determinant of a matrix with a repeated row is zero.
5. The determinant of a matrix with a zero row is zero.

6. Observe that . The determinant of a matrix with a repeated row is zero, so

so  is orthogonal to ; and similarly,

so  is orthogonal to . ■

Theorem



For any vectors  and  in , we have

The proof is a tedious but elementary calculation, which we leave as an exercise.

Corollary: the length of 

For any vectors  and  in , we have

where  is the angle between  and  (with ).

Proof

Recall that . Now

Since  if  and  for , taking square roots of both sides gives

Geometry of the cross product

Let  and  be vectors in .

The area of a triangle

Consider a triangle with sides  and  (and a third vector, namely ). Thinking of  as the base, the length of
the base is  and the height of this triangle (measured at right angles to the base) is  where 
is the angle between  and .



Hence the area of this triangle is , which is equal to  (by the formula for 
 which appears above).
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The area of a parallelogram

Consider a parallelogram, two of whose sides are  and .

This has double the area of the triangle considered above, so its area is .

Example

A triangle with two sides  and  has area 

, and the parallelogram with sides  and  has area 

.

The volume of a parallelepiped in 

Let ,  and  be vectors in .

Consider a parallelepiped [https://en.wikipedia.org/wiki/parallelepiped], with three sides given by ,  and .

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start
https://en.wikipedia.org/wiki/parallelepiped


Call the face with sides  and  the base of the parallelpiped. The area of the base is , and the volume of the parallelpiped is 
 where  is the height, measured at right-angles to the base.

One vector which is at right-angles to the base is . It follows that  is the length of , so

so the volume is

or

Now , so  is the absolute value of this determinant:



Example

Find volume of a parallelepiped whose vertices include , ,  and , where  is an
adjacent vertex to ,  and .

Solution

The vectors ,  and  are all edges of this parallepiped, so the volume is

Planes and lines in 

Recall that a typical plane in  has equation

where  are constants. If we write

then we can rewrite the equation of this plane in the form

If  and  are both points in this plane, then the vector  is said to be in the plane, or to be parallel
to the plane. Observe that

so

for every vector  in the plane. In other words: the vector  is orthogonal to every vector in the plane.

We call a vector with this property a normal vector to the plane.

Examples



Examples

1. Find a unit normal vector to the plane .

Solution: The vector  is a normal vector to this plane, so  is a unit normal vector to this plane.

Indeed,  is a unit vector and it's in the same direction as the normal vector , so  is also a normal vector.

2. Find the equation of the plane with normal vector  which contains the point . Then find three other points in this plane.

Solution: the equation is , and we can find  by subbing in : , so 
 and the equation of the plane is

Some other points in this plane are , , . (We can find these by inspection).

3. Find the equation of the plane parallel to the vectors  and  containing the point .

Solution: a normal vector is , so the equation is 

, or , or .
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4. Find the equation of the plane containing the points ,  and .

Solution:  and  are both vectors in this plane. We want to find a normal vector 

which is be orthogonal to both of these. The cross product of two vectors is orthogonal to both, so we can take the

cross product of  and :

so the equation of the plane is , and we find  by subbing in a point in the plane, say 
, which gives . So the equation is

Orthogonal planes and parallel planes

Let  be a plane with normal vector , and let  be a plane with normal vector .

1.  and  are orthogonal or perpendicular planes if they meet at right angles. The following conditions are
equivalent:

a.  and  are orthogonal planes;
b. ;
c.  is a vector in ;
d.  is a vector in .

2.  and  are parallel planes if they have the same normal vectors. In other words, if  has equation 
 then any parallel plane  has an equation with the same left hand side: 
.

Examples

1. Find the equation of the plane  passing through  and  which is orthogonal to
the plane .

Solution: The plane  has normal vector , so this is a vector in . Moreover, 

 is also a vector in , so it has normal vector

So the equation of  is  and subbing in  gives , so

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start


the equation of  is

2. The plane parallel to  passing through  is 
, or .

3. Find the equation of the plane  which contains the line of intersection of the planes

and is perpendicular to the plane .

Solution: To find the line of intersection of  and , we must solve the system of linear equations

We can solve this linear system in the usual way, by applying EROs to the matrix :

So the line  of intersection is given by

So  is a direction vector along , and also  is a vector along . So  is a

vector in the plane . Moreover, taking  gives the point  in the line , so this is a point in .

Since  is perpendicular to , which has normal vector , the vector  is in .

So a normal vector for  is



hence  has equation , and subbing in the point  gives 
, so  has equation , or

The distance to a plane

The distance from a point to a plane

Let  be a plane in  with equation , so that  is a normal vector to . Also let 

be any point in .

The shortest path from  to a point in  goes in the same direction as . Let  be any point in the plane .

From the diagram, we see that the shortest distance from  to  is given by

where

Using the formula for  and the fact that  where  is a scalar and  is a vector, we obtain the
formula

Example

To find the distance from  to the plane , choose any point  in ; for

example, let . Then  and , so
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Remark: the distance from the origin to a plane

If we write  for the origin in  and apply the formula above to the plane 
with  (assuming that ) then we obtain

where  is the normal vector .

So as  varies (with the normal vector  fixed), we obtain parallel planes at different distances to the origin ; the
larger  is, the further the plane is from .

The distance between parallel planes

If  and  are parallel planes, then the shortest distance between them is given by

for any point  is . The reason is that for parallel planes, changing  to a different point in  does not change 
.

Of course, if the planes  and  are not parallel, then they intersect (in many points: in a whole line). So for non-
parallel planes we always have .

Example

The distance between the planes  and  is , since the normal vectors 

 and  are not scalar multiples of one another, so they are in different directions, so the planes are not

parallel.

Example

The planes  and  have the same normal vector , so

they are parallel. Their distance is given by  where  is any point in , and to find this we also need
a point  in .

We can choose  and . (Of course, there are lots of different possible

choices here, but they should all give the same answer!) Then  and

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start


Exercise: a formula for the distance between parallel planes

Show that the distance between the parallel planes  and  is

where .

Example

To find the distance between  and  we can rewrite the second equation as

 to see that this is a parallel plane to the first, with common normal vector . By

the formula in the exercise the distance between these planes is

The distance from a point to a line

Suppose  is a line in . Let  be a point on  and let  be a direction vector along .

Given a point , how can we find , the (shortest) distance from the point  to the line ?

Let  be any point in  and let  be the angle between  and . We have



So

where  is any point in .

Example

To find the distance from the point  to the line

we can choose  so that  and taking , we obtain

so
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The distance from a point to a line

Alternative method

The method above relies on the cross product, so only works in . The following alternative method works in 
for any .

Observe that  is the length of the vector  where .

Example

Let's redo the previous example using this method.

We have  and , so

so

http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start


so

The distance between skew lines in 

Suppose that  and  are skew lines in : lines which are not parallel and do not cross.

Let  be a direction vector along , and let  be a direction vector along .

The shortest distance from  and  is measured along the direction orthogonal to both  and , namely the
direction of .

Let  be the plane with normal vector  which contains .



For any point  in , we have

where  is any point in ; for example, we can take  to be any point in .

To summarise: for skew lines  and  with direction vectors  and , we have

where  and  and  are points with one in  and the other in .

Remark

What about the distance between lines which are not skew? This means that either they are non-parallel and they
intersect (so that the distance between them will be zero), or the are parallel lines.

The same method and formula work if  and  are non-parallel lines which intersect, and you get

 in this case. The reason is that in this case  and  will lie in one plane, , and 

will also be in , and  will be orthogonal to . So .

If  and  are parallel lines (i.e., if the vectors  and  along the lines are in the same direction), then 
 which isn't helpful, so this method won't work here. In this case, observe that 

 where  is any point in  (because the lines are parallel), so you can use
one of the formulae above for the distance from a point to a line.

Example

Consider the skew lines



and

Note that we can rewrite the equation of  in “vector form”, which is easier to digest:

The direction vectors are  and , so we take  to be their cross product:

and if  and  then  and  are points with one in  and the other in , and 

. Hence
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