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Chapter 1: Systems of linear equations

Linear equations

First example: a linear equation in two variables

Consider the equation
2z + 5y =T.

This is an equation in two variables, or indeterminates, & and Y.

then the equation becomes true.
In other words, so that 2a + 5b really is equal to 7.

. (3, 1) is not a solution, because 2 X 3+ 5 x 1 # 7
« (1,1) is asolution, because 2 X 1 +5x 1 =7

+ Other solutions include (0, 7). (0.5,1.2). (6, —1). (3.5,0). (— 3 ,2). ...

We can't make a complete list of all solutions, since there are infinitely many solutions in R2. However, we can draw
the set of all solutions as a subset of R?. This turns out to be a straight line:

We say that the equation 2& + by = 7 is a linear equation in two variables.

Definition

If @, b, c are any fixed numbers, then equation


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=variable
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=indeterminate
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=solution
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=linear_equation_in_two_variables

ax+by=c
is a linear equation in two variables.

When you draw the set of all solutions of a linear equation in two variables, you always get a straight line in the 2-y
plane.

More examples of linear equations in two variables

e y—z=1

[ x—y:O

JA
e x=0<= 1lz+0y=0
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Linear equations in 3 variables
Definition

If @, b, ¢, d are any fixed numbers, then equation
ar+by+cz=d
is a linear equation in 3 variables.
When you draw the set of all solutions of a linear equation in 3 variables, you always get a plane in 3-dimensional space, R3.

Examples

Note: you can view the examples below from different angles, by clicking the “Rotate 3D graphics view” button.

* ABC

CQJ Rotate 3D Graphics ng

«}» Move Graphics View

cezxtyt+z=1

o &+ y = 1 This may be viewed as a linear equation in 3 variables, since it is equivalent to & + y + 0z = 1.


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start

e 2z =1, viewed as the equation 0z + 0y + 2 =1

This plane is horizontal (parallel to the Z-y plane).
Linear equations (in general)

A linear equation in m. variables (where m. is some natural number [https://en.wikipedia.org/wiki/natural number]) is an equation of the form

121 + agxs + -+ @&, = b

where a1, @2, ..., Gy, and b are fixed numbers (called coefficients) and 1, &g, . . . , Ty are variables.

Example


https://en.wikipedia.org/wiki/natural%20number
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=variable

3z + 529 — T3 + 1124 = 12
is a linear equation in 4 variables.

* A typical solution will be a point (1, T2, 3, L4) € R* so that 3z1 + by — 7x3 + 114 really does equal 12.
« For example, (—2,0, —1, 1) is a solution.
¢ The set of all solutions is a 3-dimensional object in R4, called a hyperplane [https://en.wikipedia.org/wiki/hyperplane].

¢ Since we can't draw pictures in 4-dimensional space R* we can't draw this set of solutions!
Systems of linear equations

A system of linear equations is just a list of several linear equations. By a solution of the system, we mean a common solution of each equation in
the system.

Example

Find the line of intersection of the two planes
z+3y+2=5
and
2z + Ty + 4z = 17.

Just to get an idea of what's going on, here's a picture of the two planes:

To find the equation of the line of intersection, we must find the points which are solutions of both equations at the same time. Eliminating
variables, we get

z=-16+52z, y=7-—2z
which tells us that for any value of 2, the point
(—16 + 52,7 — 2z, 2)

is a typical point in the line of intersection.
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Let's look at the example from the end of Lecture 2 more closely:

z + 3y + z = 5 (1)
2z + Ty + 4z 17 (2)

We find the solutions of this system by applying operations to the system to make a new system, aiming to end up

with a very simple sort of system where we can see the solutions easily.

First replace equation (2) with (2) —2X (1) We'll call the resulting equations (1) and (2) again, although of
course we end up with a different system of linear equations:
z + 3y + z =5 (1)
y + 2z =7 (2)

Now replace equation (1) with (1) — 3 x (2):
T — b5z = -16 (1)
y + 2z = 7 (2)

Notice that we can now easily rearrange (1) to find & in terms of 2, and we can rearrange (2) to find ¥ in terms of 2.
Since 2 can take any value, we write 2 = t where ¢ is a “free parameter” (which means £ can be any real number, or

t € R).

x=—16+ 5t
y="7—2t
z=1t, teR

We can also write this in so-called “vector form”:

T —16 5
yl=| 7 | +t|-2]1, teR.
z 0 1

This is the equation of the line where the two planes described by the original equations (1) and (2) intersect.

Note for each different value of £, we get a different solutions (that is, a different point on the line of intersection).
For example, setting t = 0 we see that (—16, 7, 0) is a solution; setting t = 1.5, we see that

(=16 +1.5 x 5,7+ 1.5 x (—2),1.5) = (—8.5,4, 1.5) is another solution, and so on. This works for any
value t € R, and every solution may be written in this way.

Observations

1. The operations we applied to the original linear system don't change the set of solutions. This is because each
operation is reversible.
2. Writing out the variables &, Yy, z each time is unnecessary. If we erase the variables from the system

z + 3y + z = 5 (1)
2 + Ty + 4z = 17 (2)

and write all the numbers in a grid, or a matrix, we get:


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=lecture_2
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=system_of_linear_equations

1 3 1 5
2 7 4 17
Notice that the first column corresponds to the & variable, the second to y, the third to z and the numbers in the final

column are the right hand sides of the equations. Each row corresponds to one equation. So instead of performing
operations on equations, we can perform operations on the rows of this matrix:

(1 3 1 5
2 7 4 17
R2—+R2-2xR1 '1 5:|

7

=]
=W
N =

2 7

o
—

R1-5R1-3xR1 _1 0 -5 _16]

Now we translate this back into equations to solve:

x — b5z = -16 (1)
y + 2z = 7 (2)
SO
z —16 5
yl=| 7 | +t|-2]1, teR.
z 0 1

This sort of thing works in general: we can take any system of linear equations, write down a corresponding matrix,
perform certain reversible operations on the rows of this matrix to get a new matrix, and then write down a new
system of linear equations with the same solutions as the original system. If we do things in a sensible way then the
new system will be easy to solve, so we'll be able to solve the original system (since the solution set is the same).

Let's give some terminology which will allow us to make this process clear.

The augmented matrix of a system of linear equations

Definition

Given a system of linear equations:

a11T1 + a2x2 + -+ + AT, = b1
a1 + axpx: + -+ aamTm = bo

11 + a2 4+ + ATy = by,

its augmented matrix is

ail ai2 cee Qim b1
a21 ag2 cee Q2 b2
apl Qpn2 ... Qpym bp

The numbers in this matrix are called the entries of the matrix. We can be a bit more precise: the number in row %


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=system_of_linear_equations

and column j is called the (4, §) entry of the matrix.
Example

To find the augmented matrix of the linear system

3z +4y+T72=2
z+32=0
y—2z=25

notice that we can rewrite it as

3z +4y+72=2
lz+0y+32=0
Oz+1y—2z2z=5

so the augmented matrix is

3 4 7 2
10 3 0
01 -2 5

o the (2, 3) entry of this matrix is 3;

o the (3,2)entryis 1;

o the (1,4) entry is 2;

o the (4, 1) entry is undefined (since this matrix does not have a 4th row).

Elementary operations on a system of linear equations

If we perform one of the following operations on a system of linear equations:

1. list the equations in a different order; or
2. multiply one of the equations by a non-zero real number; or
3. replace equation j by “equation 7 4+ ¢ X (equation 2)”, where ¢ is a non-zero real number,

then the new system will have exactly the same solutions as the original system. These are called elementary
operations on the linear system.

Why do elementary operations leave the solutions of systems unchanged?

e we are doing the same thing to the left hand side and the right hand side of each equation, so any solution to
the original system will also be a solution to the new system; and

» these operations are reversible, using operations of the same type, so any solution to the new system will also
be a solution to the original system.

Elementary row operations on a matrix

Recall that when we form the augmented matrix of a linear system, each equation in the system becomes a row of

the matrix. So we can translate the elementary operations on the linear system into corresponding operations on the
rows of the matrix. We get three different types:

1. change the order of the rows of the matrix;
2. multiply one of the rows of the matrix by a non-zero real number;
3. replace row j by “row j + ¢ X (row 4)”, where ¢ is a non-zero real number and % # j.



The system of linear equations corresponding to these matrices will then have exactly the same solutions.
We call these operations elementary row operations or EROs on the matrix.

Example

Use EROs to find the intersection of the planes

3z +4y+T72=2

z+3z2=0
y—2z=35
Solution 1
3 4 7 27
1 0 3 O
0 1 —2 5]
reorder rows [ 10 3 0 ]
—_— |01 -2 5
3 4 7 2]
R3—R3—3R1 -1 0 3 O-
— |0 1 -2 5
0 4 —2 2]
R3—R3—4R2 -1 0 3 0
— |0 1 -2 5
|0 0 6 -—18
RS>2R3 [1 0 3 0
— |0 1 -2 5
[0 0 1 -3
So
e from the last row, we get 2 = —3

« from the second row, we gety — 22 =5,s0y — 2(—3) = 5,s0y = —1
o from the first row, we get £ + 3z = 0,50z + 3(—3) = 0,s0z =9

The conclusion is that

8
©

is the only solution.
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Example

Use EROs to find the intersection of the planes

3z +4y+72=2

z+3z2=0
y—2z=235
Solution 1
3 4 7 27
1 0 3 O
[0 1 -2 5]
reorder rows [ 10 3 0 |
— |0 1 -2 5
|13 4 7 2]
R3—+R3—3R1 -1 0 3 O-
——— |0 1 -2 5
|0 4 -2 2]
R3—R3—4R2 -1 0 3 0
— |0 1 -2 5
|0 0 6 -—18
R>eR3 [1 0 3 0
—F— |0 1 -2 5
|0 0 1 -3
So
e from the last row, we get 2 = —3

« from the second row, we gety — 22 = 5,s0y — 2(—3) = 5,s0y = —1
« from the first row, we get £ + 32 = 0,50z + 3(—3) = 0,s0z =9

The conclusion is that

is the only solution.
Solution 2

We start in the same way, but by performing more EROs we make the algebra at the end simpler.


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start
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3 4 7 2
1 0 3 O
0 1 -2 5]
reorder rows [ 10 3 0 ]
— |0 1 -2 5
3 4 7 2
R3—R3—-3R1 [ 10 3 0 ]
—_— |01 -2 5
0 4 —2 2]
R3—+R3—4R2 I 10 3 0
|0 1 -2 5
|0 0 6 —18
R»eRrR3 [1 0 3 0
— |0 1 -2 5
(0 0 1 -3
R2—R2+2R3 -1 0 3 0 ]
— |0 1 0 -1
(0 0 1 -3
R1—+R1-3R3 -1 0 0 9 ]
— |0 1 0 -1
|0 0 1 -3
So
o from the last row, we get 2 = —3
e from the second row, we get y = -1
e from the first row, we get & = 9
The conclusion is again that
T 9
y|=|[-1
z -3

is the only solution.
Discussion

In both of these solutions we used EROs to transform the augmented matrix into a nice form.

10 3 0
e In solution 1, we ended up with the matrix lo 1-25 :| which has a staircase pattern, with zeros below the
00 1 -3

staircase, and 1s just above the “steps” of the staircase. This is an example of a matrix in row echelon form
(see below). We needed a bit of easy algebra, called back substitution, to finish off the solution. (Why is it
called echelon form? It seems that this word has an archaic meaning
[http://dictionary.reference.com/browse/echelon] which is relevant to the staircase-like pattern: “any structure or
group of structures arranged in a steplike form.”)

100 9
¢ In solution 2, we ended up with the matrix |:0 10 —1:| which has a staircase pattern with zeros below the

001 -3


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=augmented_matrix
http://dictionary.reference.com/browse/echelon

staircase and 1s just above the “steps” of the staircase, and the additional property that we only have zeros
above the 1s on the steps. This is an example of a matrix in reduced row echelon form (see below). Finding
the solution from this matrix needed no extra algebra.

Row echelon form and reduced row echelon form

Row echelon form (REF)
Definition

A row of a matrix is a zero row if it contains only zeros. For example, [0 0 0 0 0] is a zero row.

A row of a matrix is non-zero, or a non-zero row if contains at least one entry that is not 0. For example

[0 030 0] is non-zero, and sois [1 234 — 5].
Definition

The leading entry of a non-zero row of a matrix is the leftmost entry which is not 0.

For example, the leading entry of therow [0 0 0 6 20 3 1 0] is 6.
Definition

A matrix is in row echelon form, or REF, if it has all of the following three properties:

1. The zero rows of the matrix (if any) are all at the bottom of the matrix.

2. In every non-zero row of the matrix, the _l_g_g_l_@i_l}_g___e_:_g_t__r__y_ is 1.

3. If row % and row (% 4 1) are both non-zero, then the leading entry in row (% 4 1) is to the right of the
leading entry in row 2.

In other words, as you go down the rows, the leading entries must go to the right.

1234 5' 12345
For example, | 0123 4 [ and | ) 223 2| are both in REF, but
00123] 00000
i 1 (12345
12345 00000 . . L
1.|]ooooo0| and 00123 | arenotin REF, since they each have a zero row which isn't at the bottom;
00123
L : (00000
12345 . . . . .
2. | 02 3 41| is not in REF, since the leading entry on the second row isn't 1;
(00123
01234]. . . . . : . . .
3. | 123 45| isnot in REF, since the leading entry in row 2 is not to the right of the leading entry in row 1.
00123

Reduced row echelon form (RREF)
Definition

A matrix is in reduced row echelon form or RREF if it is in row echelon form (REF), so that

1. The zero rows of the matrix (if any) are all at the bottom of the matrix.

2. In every non-zero row of the matrix, the _l_g_g_igljg_l.g__gg.t‘_r_x is 1.

3. If row % and row (% + 1) are both non-zero, then the leading entry in row (% + 1) is to the right of the
leading entry in row 2.

In other words, as you go down the rows, the leading entries must go to the right.



and the matrix also has the property:
4. If a column contains the leading entry of a row, then every other entry in that column is 0.

For example,

1 2 3 4 5 1 0 3 4 5
0 1 2 3 4/ and [0 1 0 3 4
0 01 2 3 0 01 2 3

are both in REF, but they are not in RREF because the red entries are non-zero and are in the same column as a
leading entry (in blue).

On the other hand,
1 0 0 4 5
01 0 3 4
0 01 2 3

is in RREF.

Example

Use EROs to put the following matrix into RREF:

1 2 3 4 5
01 2 3 4
0 01 2 3
and solve the corresponding linear system.
Solution
1 2 3 4 5
01 2 3 4
[0 01 2 3
Rom—2ks |1 2 3 4 5]
— (0 1 0 -1 -2
[0 01 2 3 ]
R1—+R1-3R3 (1 2 0 -2 —4]
— |01 0 -1 -2
[0 0 1 2 3 ]
RisRi2r2 [1 0 0 0 0]
— |01 0 -1 -2
[0 0 1 2 3 ]

This matrix is in RREF. Write &; for the variable corresponding to the ith column. The solution is

1. 4 = t, a free parameter, i.e. t € R. This is because the 4th column does not contain a leading entry.
2. Fromrow 3: 23 + 2t = 3,s0x3 = 3 — 2t

3. Fromrow2: 29 —t = —2,s029 = -2+t

4. Fromrow 1: 1 = 0


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=eros
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=rref

So the solution is

I 0 0
) -2 1

= t teR
T3 3 + -2 ’ <
Lq 0 1

(Geometrically, this is a line in 4-dimensional space R4).
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Solving a system in REF or RREF

come in two types:

» leading variables are variables whose column contains the leading entry of some row;
« free variables are all the other variables.

Example

For the augmented matrix

O O =
o O N
== O

3
1
0

W= o
= O 00

which is in REF, if we use the variables &1, 2, £3, 4, T then

* I3, 3 and x4 are leading variables, since the corresponding columns have a leading entry
e X9 and &5 are free variables, since the corresponding columns do not have a leading entry

To solve such a linear system, we use the following procedure:

1. assign a free parameter (a letter like 7, 8, , . . . representing some arbitrary real number) to each free variable
2. starting at the bottom of the matrix, write out each row and rearrange it to give an equation for its leading
variable, substituting the other variables as needed.

In the example above, this gives:

1. 9 and 5 are free, so set £y = 8 where $ € Rand 5 = t wheret € R
2. Working from the bottom:

Ty +3xs =4 — x4=4—3x5=4—3t
T3 +xTy+o5 =5 —= 23 =5—x4—25=5—(4—-3t)—t=1+2t
Ty +2ry+323 =8 — 21 =8—2x9 — 303 =8—25s—3(1+2t) =5—2s — 6t.
So

r1 =5 — 28— 6t

L9 = 8
r3 =142t
:I)4=4—3t
iB5=t

where s and ¢ are free parameters, i.e. 8,t € R.

Writing this solution in vector form gives:


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=ref
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T1 5 -2 —6

Ty 0 1 0

z3| =11|+s| 0 | +t] 2|, s,teR.
L4 4 0 -3

| Z5 _0_ B 0 i | 1 _

Note that the solution set is a subset of R®, which is 5-dimensional space; and the solution set is 2-dimensional,
because there are 2 free parameters.

Gaussian elimination

We've seen that putting a matrix into REF (or even better, in RREF) makes it easier to solve equations.

Aim: put any matrix into REF using EROs.

Algorithm

1. Re-order the rows so that the leftmost leading entry in the matrix is in the top row.

2. Divide all of the top row by its leading entry, so that this entry becomes a 1.

3. “Pivot about the leading 1”: subtract multiples of the top row from each row below so that all entries below
the leading 1 in the top row become 0.

4. Go back to the start, ignoring the top row (until no rows remain, except possibly zero rows).

If we want, we can go further and put the matrix into RREF. First put it into REF as above, and then:

1. Look at the non-zero row nearest the bottom of the matrix

2. Pivot about the leading 1 in that row and use it to make zeros above: subtract multiples of that row from each
row above

3. Move to the next row up, and go to step 2 (until no rows remain).

Example

Use Gaussian elimination to solve the linear system

2z +y+ 3z + 4w =27
z+2y+ 3242w =30
z+y+3z+w=25

Solution 1

We put the augmented matrix into REF:


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=ref
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(2 1 3 4 277
1 2 3 2 30
11 3 1 25]
reorder rows (to avoid division) i 1 1 3 1 25 1
» 11 2 3 2 30
2 1 3 4 27]
R2R-RlendR3sR32r2 |1 1 3 1 25
> 10 1 0 1 5
[0 -1 -3 2 -23
R3—R3+R2 1 1 3 1 25
»10 1 0 1 5
|0 0 -3 3 -18
R3-— 3 R3 11 3 1 25
*»10 1 0 1 5
[0 01 -1 6

This is in REF. There are leading entries in the columns for &, ¥, 2 but not for w, so w = t is a free variable (where
t € R). Now

z—w=6 — z2=6+w=6+1t
y+tw=95 — y=5—-—w=5-1
z+y+3z2+w=25 —= z=25—y—3z—w=25—(5—t)—3(6+¢t)—t=2— 3t

So
x 2 -3
Y 5 -1
= t teR
z 6 + 1[0 '€
w 0 1
Solution 2
We put the augmented matrix into RREF.
2 1 3 4 27
1 2 3 2 30
1 1 3 1 25
do everything as above (1 1 3 1 25
>»10 1 0 1 5
0 01 -1 6
R1-R1-3R3 (1 1 0 4 7]
*»10 1 0 1 5
[0 01 -1 6,
R1-R1-R2 (1 0 0 3 2]
»*10 1 0 1 5
0 0 1 -1 6]




This is in RREF. There are leading entries in the columns for &, Y, z but not for w, so w = £ is a free variable
(where t € R). Now

z—w=6 —= z=6+w=6+t
y+w=5 —= y=5—-w=>5-1
z+3w=2 — z=2—-3w=2-3t

So

E nwwe 8
|

O O ot N
-

Example
A function f(z) has the form
f(z) = az® + bz + ¢
where @, b, ¢ are constants. Given that f(1) = 3, f(2) = 2and f(3) = 4, find f(z).

Solution

f1)=3 = a-1>+b-14+¢c=3 = a+b+c=3
f2)=2 = a-22+b-2+c=3 = 4a+2b+c=2
f3)=4 = a-3>+b-34+c=3 = 9a+3b+c=4

We get a system of three linear equations in the variables a, b, c:

at+b+c=3
4a+2b+c=2
9a+3b+c=4

Let's reduce the augmented matrix for this system to RREF.



1 1 1 3
4 2 1 2
(9 3 1 4
RoR 4RlandR3oR3om1 |1 1 1 3
>0 -2 -3 -10
0 -6 -8 —23
R2—>—%R2 101 1 3
s 10 1 % 5
0 -6 -8 —23]
R3—R3+6R2 11 % 3
s |0 1 5 5
(0 0 1 7
R1-R1-R3 and R2—R2— % Rz [1 1 0 —-47]
>0 1 0 -=5.5
001 7 |
R1-R1-R2 1 0 0 1.5
>0 1 0 -5.5
001 7 |

Soa=1.5b= —5.5andec = T7;s0

f(z) = 1.52% — 5.5z + 7.
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Examples

Example 1

Solve the linear system

20 +4y—2z=1
zt+yt+z=4
2c 4+ 5y+2=3

by transforming the augmented matrix into reduced row echelon form.

Solution
[3 4 —2 1]
11 1 4
|2 5 1 3]
R1:R2 (1 1 1 4]
» 3 4 -2 1
|2 5 1 3]
R2R2-3RlandR3—R3—2m1 |1 1 1 4 7
>0 1 -5 -11
|0 3 -1 -5 |
R3—R3-3R1 11 1 4]
» (0 1 -5 -11
|0 0 14 28
R3- <7 B3 101 1 4]
» (0 1 -5 -11
|0 0 1 2 ]
RISRI-R3andR2sResks |1 1 0 2]
»(0 1 0 -1
|0 0 1 2 |
R1-R1-R2 [1 0 0 3]
»(0 1 0 -1
|0 0 1 2 |
The solution is z = 3,y = —1, 2 = 2. So there is a unique solution: just one point in R3, namely (3,-1,2).
Example 2

Solve the linear system

3r+y—22z24+4w=>5
z+z+w=2
dx+2y—62+6w =0

Solution
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3 1 -2 4 5

1 0 1 1 2

(4 2 -6 6 0]

RIGR2 1 0 1 1 27

>3 1 -2 4 5

4 2 -6 6 0]
R2R2-3RlandR3oR3—am1 |1 0 1 1 2
10 1 -5 1 -1
|0 2 —-10 2 -8
R3—R3-2R2 1 0 1 1 27

*10 1 -5 1 -1
0 0 0 0 —6]
R3-— 1 R3 10 1 1 2]
101 -5 1 -1
00 0 0 1|
This is in REF. The last row corresponds to the equation
0=1

which clearly has no solution! We conclude that this system has no solutions, and hence the original linear system has no solutions either.
A linear system with no solutions is called inconsistent.

We can detect an inconsistent linear system, since whenever we apply EROs to put the augmented matrix into REF, we will get a row of the

form [0 0 0 ... O %] where * is non-zero.
Example 3

For which value(s) of k does the following linear system have infinitely many solutions?

z+y+z=1
r—2=25
2c+ 3y + kz=—2

Solution

11 1 1
1 0 -1 5
|2 3 k -2
R2—R2—R1 and R3—R3—2R1 [ 1 1 1 1
»10 -1 =2 4
|0 1 k-2 -4
R2——R2 -1 1 1 1 ]
>0 1 2 —4
|0 1 k-2 —4]
R3—+R3—R2 11 1 1]
> 10 1 2 —4
|0 0 k—4 0 |
If k — 4 = 0, then this matrix is in REF:
1 11 1
01 2 -4
0 00 O

In this situation, 2 is a free variable (since there's no leading entry in the third column). For each value of 2 we get a different solution, so if

k — 4 = 0, or equivalently, if k& = 4, then there are infinitely many different solutions.

If k — 4 # 0, then we can divide the third row by k — 4 to get the REF:
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111 1
01 2 4
0 01 O

In this situtation, there are no free variables since &, ¥ and 2 are all leading variables. So if k—4 75 0, or equivalently if k 7é 4, then there
are no free variables so there is not an infinite number of solutions. (The only possibilities are that there is is a unique solution or that the
system is inconsistent; and in this case you can check that there is a unique solution, although we don't need to know this to answer the
question).

In conclusion, the system has infinitely many solutions if and only if k = 4.

Observations about Gaussian elimination

We know that we can apply EROs to any augmented matrix into REF.

Suppose the system has 7. equations and m. variables, and let k be the number of non-zero rows in REF. Also suppose the system is
consistent: then the REF has no row of the form [0 0 0 ... 1].
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o k < n, because there are only 1. rows in the whole matrix
o ks precisely the number of leading variables. So k is no bigger m, the total number of variables; in symbols, we have k < m.

o All the other variables are free variables, so
m — k is the number of free variables.

What does this tell us about the set of solutions? For example, how many solutions are there?
Observation 1: free variables and the number of solutions

For consistent systems, this shows that:

o citherk = m,;
e som—k=0
» there are no free variables
 the system has one solution and no more
e We say it has a unique solution.
e ork<m
e som—k>0
» there is at least one free variable
* so the system has infinitely many solutions (one for each value of each free variable)
o The number of free variables, . — k, is called the dimension [https:/en.wikipedia.org/wiki/dimension] of the solution set.

Observation 2: systems with fewer equations than variables

For consistent systems where . < m (fewer equations than variables):


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=eros
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=ref
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e k<n<msok<m.
¢ So there is at least one free variable.
e So in this situation we always have infinitely many solutions.

Chapter 2: The algebra of matrices

Definition
An n X m matrix is a grid of numbers with 72 rows and m columns:

ail aio eoo Q1m

a1 a9 eee Qom
A=

ap1 Qap2 eer QAum

The (%, j) entry of a matrix A is @;;, the number in row % and column j of A.
Example

9 3 5
7 —-20 14
(2,1) entry is ba1 = 7, etc.

If B= :| , then Bis a2 X 3 matrix, and the (1, 1) entry of Bis b1y = 99, the (1, 3) entry of Bis b3 = 5, the
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Examples

is a ® X 1 matrix. A matrix like this with one column is called a column vector.

[ ]
O k= N W

-1

. [33 2- 4 0 —1]isal x b matrix. A matrix like this with one row is called a row vector.

Even though the row matrix and the column matrix above have the same entries, they have a different “shape”, or
“size”, so we must think of them has being different matrices. Let's give the definitions to make this precise.

Definition

Two matrices A and B have the same size if they have the same number of rows, and they have the same number of
columns.

If two matrices do not have the same size, we say they have different sizes.
Definition

Two matrices A and B are said to be equal if both of the following conditions hold:

e A and B have the same size; and

o every entry of A is equal to the corresponding entry of B; in other words, for every ('i, J) so that A and B
have an (%, j) entry, we have @;; = b;;.

When A and B are equal matrices, we write A = B. Otherwise, we write A # B.

Examples

#[3 2 4 0 —1], since these matrices have different sizes: the firstis 5 X 1 but the

[ ]
O k=N W

| —1 ]
secondis 1 X b.

. ;] 7é |:; 8] since these matrices are not the same size.

1 1
*lo (1):| # l 1 g] because even though they have the same size, the (2, 1) entries are different.

¢ 3z Ty+2 _[1 2z
v2 9

8z—3 w?

get four equations:

:| then we know that all the corresponding entries are equal, so we


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start

3z=1

Ty+2 =2z
82—3=+2
w? =

Operations on matrices

We want to define operations on matrices: some (useful) ways of taking two matrices and making a new matrix.

Before we begin, a remark about 1 X 1 matrices. These are of the form [011] where @y is just a number. The
square brackets [] don't really matter here; they just keep the inside of a matrix in one place. So really: al X 1
matrix is just a number. This means that special cases of the operations we define will be operations on ordinary
numbers. You should check that in the special case when all the matrices involved are 1 X 1 matrices, the
operations become the ordinary operations on numbers, so we are generalising the familiar operations (addition,
subtraction, multiplication and so on) from numbers to matrices.

Matrix addition and subtraction
Definition of matrix addition

If A and B are matrices of the same size, then A + B is defined to be the matrix with the same size as A and B so
that the (%, §) entry of A + Bis a;; + b;;, for every 4, j.

If A and B are matrices of different sizes, then A + B is undefined.

Example
[1 2 —2]+l—2 2 0]:[—1 4 —2]
30 5 1 11 4 1 6
Example
[; g _52]4-[_12 1] is undefined.
Remarks

1. For any matrices A and B with the same size: A + B = B + A. We say that matrix addition is
commutative.

2. For any matrices A, B and C with the same size: (A + B) + C = A + (B + C). We say that matrix
addition is associative.

Definition of the zero matrix

The m X 1 zero matrix is the m X 1M matrix so that every entry is 0. We write this as Qp, . SO

0 0 ... 0
0O 0 ... 0
Onxm = | .. :
0O 0 ... 0

where this matrix has 1 rows and m columns.



Exercise

Show that if A4 is any . X T, matrix, then
Onxm +A=A=A+Onxm

Remember that when checking that matrices are equal, you have to check that they have the same size, and that all
the entries are the same.

Definition of matrix subtraction

If A and B are matrices of the same size, then A — B is defined to be the matrix with the same size as A and B so
that the (%, 7) entry of A — Bis a;j — byj, for every 4, j.

If A and B are matrices of different sizes, then A — B is undefined.

Example

Example

1 1

Scalar multiplication

Definition of a scalar

In linear algebra, a scalar is just a fancy name for a number (in this course: a real number). The reason is that
numbers are often used for scaling things up or down; for example, the scalar 3 is often used to scale things up by a
factor of 3 (by multiplying by 3).

Definition of scalar multiplication of matrices

If ¢ is a real number and A is an m X m matrix, then we define the matrix ¢A to be the 7. X m matrix given by
multiplying every entry of A by ¢. In other words, the (¢, §) entry of cA is ca; ;.

Example

1 0 -3
3 4 1

3 0 -9
9 -12 3

)1 0 -3]_[3 0o -9
3 -4 1| |9 —-12 3|

IfA = [ :| ,then 34 = [ ] . In other words,

The negative of a matrix

We write —A as a shorthand for —1A4; so the (, §) entry of —A is —a;;. For example,

[-1 0 3] _[1 0 -3
3 —4 1] |-3 4 -1



Exercise
Prove that A — B = A + (—B) for any matrices A and B of the same size.
Row-column multiplication

Definition of row-column multiplication

by
by
Ifa = [a,l a ... ap ] isal X m row vectorand b = .| isanm X 1 column vector, then the row-
br,
column product, or simply the product of a and b is defined to be
b
bo
ab=[ar ay ... ap]| . | =a1by +asby+---+ayby,.
bn,

If we want to emphasize that we are multiplying in this way, we sometimes write @ - b instead of ab.

The product ab of a 1 X 1 row vector @ with an m X 1 column vector b is undefined if m # n.

Examples

1 2][_31] =1-342-(-1)=3+(-2)=1.

[1 2 7] 31]isnotdefined.

Z
«[2 3 5]|y| =2x+3y+ 52
| 2
I
T2
 Generalising the previous example: if @ = [al a ... Qn ] and x = . | ,then
Lm

ar = aix1 + asxs + - - - + a2, - So we can write any linear equation

a1x1 +asxy + - -+ + ATy, = b as a shorter matrix equation: axz = b.
Matrix multiplication

This generalises row-column multiplication. The idea is that you build a new matrix from all possible row-column
products. The formal definition will appear later, but here's an example:

1 2
L [1 0 5]{3| [1 0 5]f4
[1 0 5]34: 5 6 :[26 32].
2 -1 3]|; ¢ 1 2 14 18
[2 -1 3]|3| [2 -1 3]|4
I 5 6



http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=linear_equation
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Definition of matrix multiplication

If Aisann X m matrix and Bis anm X k matrix, then the product AB is the n X k matrix whose (%, §) entry
is the row-column product of the ¢th row of A with the jth column of B. That is:

(AB)i’j = I'OW; (A) . COlj (B)

If we want to emphasize that we are multiplying matrices in this way, we might sometimes write A - B instead of

AB.

If Aisann X m matrix and Bis an £ X k matrix with m = ¢, then the matrix product A B is undefined.

Examples

- 1 2 5 =2 11
LLIfA = 10 5:| andB=[3 4],thenAB=l26 32] andBA=[11 —4 27].

2 -1 3 E 6 14 18 17 —6 43
Note that AB and BA are both defined, but AB # BA since AB and BA don't even have the same size.
_ 2 1 1
12 12 0 1307
2IfA= |3 4|, B= and C = ,then Ais3 X 2, Bis4 x 3and C
1 0 2 0 4 6 8
L5 6 2 21

is2 x4, s0

AB, CA and BC don't exist (i.e., they are undefined);

AC exists and is 3 X 4;

BA exists and is 4 X 2; and

CB exists and is 2 X 2.

In particular, AB # BA and AC # CA and BC # CB, since in each case one of the matrices

doesn't exist.

_[o 1] _ [0 o] _[1 o] _[o o]
3IfA= 0 0 and B = 1 0_,thenAB— 0 0 and BA = 0 1_.SoABandBAare
both defined and have the same size, but they are not equal matrices: AB # BA.
1 0] o o] o o] o o] o
4. IfA = 0 0 and B = 0 1_,thenAB— 0 0 and BA = 0 0_.SoAB—BA1n
this case.

5. If A = 0,,«p, is the @ X 72 zero matrix and B is any @ X T matrix, then AB = 0,,x, and BA = 0,,51,..
So in this case, we do have AB = BA.

1 2] _[7 10] 37 547 _ _
6.1fA= 3 4 and B = 15 22_,thenAB— 81 118 = BA, so AB = BA for these
particular matrices A and B.
1 2] _[6 10] _[36 54] _[36 52
7.1fA= 3 4 and B = 15 22_,thenAB— 78 118 and BA = [81 118]’80
AB # BA.

Commuting matrices

Typesetting math: 100% .
Yve Say urat Iratices 71 and .B commute if AB - BA
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Which matrices commute? Suppose A is an m X m matrix and B is an £ X k matrix, and A and B commute, i.e.,

AB = BA.

e A B must be defined, som = £
e BA must be defined, so k = n

e ABisann X k matrix and BA is an £ X 1 matrix. Since A B has the same size as BA, we must have
n=~Ladk=m.

Putting this together: we see that if A and B commute, then A and B must both be n. X m matrices for some
number 7. In other words, they must be square matrices of the same size.

Examples 4 and 5 above show that for some square matrices A and B of the same size, it is true that 4 and B
commute. On the other hand, examples 3 and 6 show that it's not true that square matrices of the same size must
always commute.

Because it's not true in general that AB = BA, we say that matrix multiplication is not commutative.

Definition of the . X n identity matrix

The n X 7 identity matrix is the 7 X m matrix [,, with 1s in every diagonal entry (that is, in the (i, 7,) entry for
every ¢ between 1 and 1), and Os in every other entry. So

1 0 0 ... 0
010 ... 0
I, = 0O 01 ... 0
|0 0 O 1]
Examples
1.[12[1]
(1 0
2. =
I 0 1
1 0 0
3I3=10 1 0
[0 0 1
1 0 0 O
01 00
41y = : !
I 00 1 0 and so on
[0 0 0 1

Proposition: properties of I,

1. I,A = A forany n X m matrix A;
2. AL, = A foranyn X m matrix A; and

3. I,B = B = BI,, for any n. X n matrix B. In particular, I,, commutes with every other square 7 X n.
matrix B.

Proof of the proposition

1. We want to show that InA = A for any 1. X m matrix A. These matrices the s{_agne__s_i_z_e_:, since I, has size

n X n and A has size n X m, so InA has size . X m by the definition of matri;cun;l.l"l-ti};lication, which is the
same as the size of A.
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Note thatrow; (I,) =[00 ... 010 ... 0], where the 1 is in the 4th place, by definition of the identity matrix
ai;
‘ a2j

I,; and the jth columnof Ais | . |.The (i) entry of I, A isrow; (I,) - col;(A), by the definition of matrix

anj
multlphcatlon, which is therefore

[000100] . =0a1j—|—0a2j—|—---—|—0a,-_1,j+1a,-j—|—0a,-+1,j—|----—|—0anj

= aij.

So the matrices I, A and A have the same size, and the same (%, j) entries, for any (%, 7). So [, A = A.
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Proof of the proposition, continued

2. To show that A, = A for any n X m matrix A is similar to the first part of the proof; the details are left as an
exercise.

3.1f Bis any n X n matrix, then I,, B = Bby part 1 and BI,, = Bbypart2,sol,B= B = BI,.In
particular, I,, B = BI, so I,, commutes with B, for every square . X 1 matrix B. m

Algebraic properties of matrix multiplication

The associative law
Proposition: associativity of matrix multiplication

Matrix multiplication is associative. This means that (AB)C = A(BC) whenever A, B, C' are matrices which
can be multiplied together in this order.

We omit the proof, but this is not terribly difficult; it is a calculation in which you write down two formulae for the
(2, 7) entries of (AB)C and A(BC), and carefully check they are equal using the fact that if a, b, ¢ are real
numbers, then (ab)c = a(be).

Example

_ |1 2 o |7 10
We saw above that A = [ 3 4] commutes with B = l 15 922

E 3
associativity. You can check that B = A A (which we usually write as B = A2). Hence, using associativity at =,

] . We can explain why this is so using

AB = A(AA) = (AA)A = BA.
The same argument for any square matrix A gives a proof of:

Proposition

If A is any square matrix, then A commutes with A2.m

induction [https://en.wikipedia.org/wiki/mathematical induction], you can prove the following more general proposition.

Proposition: a square matrix commutes with its powers

If A is any square matrix and k € N, then A commutes with A*.m
The distributive laws

Lemma: the distributive laws for row-column multiplication

. Ifaisal X mrow vector and b and ¢ are m X 1 column vectors, thena - (b+¢c) =a-b+a-c.


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start
https://en.wikipedia.org/wiki/mathematical%20induction

2. Ifband c are 1 X m row vectors and @ is an m X 1 column vector, then (b+¢)-a=b-a +c- a.

The proof is an exercise (see tutorial worksheet 5).
Proposition: the distributive laws for matrix multiplication

If Aisanmn X m matrix and k € N, then:

1. A(B+ C) = AB + AC for any m X k matrices B and C} and
2. (B4 C)A = BA + CA forany k X n matrices Band C.

In other words, A(B + C) = AB + AC whenever the matrix products make sense, and similarly
(B + C)A = BA + C A whenever this makes sense.

Proof

1. First note that

e Band Carebothm X k,so B+ C'ism X k by the definition of matrix addition;

« Aisn X mand B+ Cism X k,so A(B+ C) ism X k by the definition of matrix multiplication;
o ABand AC are bothn X k by the definition of matrix multiplication

e so AB+ AC isn X k by the definition of matrix addition.

By the Lemma above, the row-column product has the property that

a-(b+c)=a-b+a-c.
So the (3, ) entry of A(B + C) is

row; (A) - colj(B + C) = row;(A) - (col;(B) + col;(C))
= row; (A) - col;(B) + row;(A) - col;(C).

On the other hand,

o the (3, ) entry of ABisrow;(A) - col;(B); and

e the (2, j) entry of AC' is row;(A) - col;(C);

* so the (%, j) entry of AB + AC is also row; (A) - col;(B) + row;(4) - col;(C).
So the entries of A(B + C) and AB + AC are all equal, so A(B+ C) = AB + AC.

2. The proof is similar, and is left as an exercise.m

Matrix equations

We've seen that a single linear equation can be written using row-column multiplication. For example,

2 —3y+2=28

can be written as
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or

z
wherea =2 —3 1l]andZ = |y
z

We can write a whole system of linear equations in a similar way, as a matrix equation using matrix multiplication.
For example we can rewrite the linear system

2z —3y+2z=28
y—z=4
z+y+2=0
as
2 -3 1 T 8
0 1 -1||y|=1]4],
1 1 1 z 0
or
AZ =50
2 -3 1 z] _ [8
where A= | 0 1 -1 ,:_If =ly andb= |4 |.(Weare writing the little arrow above the column
1 1 1 z 0

vectors here because otherwise we might get confused between the Z: a column vector of variables, and &: just a
single variable).

More generally, any linear system
a1 + a2 + -+ + aGmTm = by
a21%1 + G22x3 + -+ + a2 Ty = by

Ap1T1 + Ap2Z2 + -+ + QG Ty, = bn

can be written in the form

—

AZ=0>
where A is the n X m matrix, called the coefficient matrix of the linear system, whose (%, j) entry is a;; (the
1 by
. L | = > | b2
number in front of & ; in the tth equation of the system) and = . |.,andb =
Ty b,

lecture_9.txt - Last modified: 2016/02/29 10:24 by rupert


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=system_of_linear_equations
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=matrix_multiplication

P ‘ MST10030 notes wiki
“_.._ =

!
More generally still, we might want to solve a matrix equation like
AX =B

where A, X and B are matrices of any size, with A and B fixed matrices and X a matrix of unknown variables.
Because of the definition of matrix multiplication, if A is 1 X m, we need B to be n X k for some k, and then X
must be m X k, so we know the size of any solution X. But which m X k matrices X are solutions?

Example

1 0

IfA= lo 0

] and B = 0943, then any solution X to AX = B mustbe 2 X 3.

One solution is X = 093, since in this case we have AX = AQ9yx3 = 0ax3.

However, this is not the only solution. For example, X = (1) (2) 3] 1s another solution, since in this case
1 0][0 0 O] 0 00
AX = = = .
lo 0“1 2 3 [0 0 0] Ozcs

So from this example, we see that a matrix equation can have many solutions.

Invertibility

We've seen that solving matrix equations AX = B is useful, since they generalise systems of linear equations.

How can we solve them?

Example

Take A = lz 4] and B = l?’ 4] , so we want to find all matrices X so that AX = B, or

01 5 6
2 4], [3 4
l01]X‘[56]'

Note that X must be a 2 X 2 matrix for this to work, by the definition of matrix multiplication. So one way to solve

this is to write X = [ 1 =12 ] and plug it in:

T21 T22
2 4|(|x11 212 _ 3 4 — 2x11 + 4291 2219 + 499 _ 3 4
0 1 o1 T2 5 6 21 992 5 6

and then equate entries to get four linear equations:
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2211 + 4221 =3
2212 + 490 =4
o1 = 5
T2 = 6

which we can solve in the usual way.

But this is a bit tedious! We will develop a slicker method by first thinking about solving ordinary equations az = b
where a, &, b are all numbers, or if you like, 1 X 1 matrices.

Solving ar = band AX = B

If @ # 0, then solving az = b where a, b, T are numbers is easy. We just divide both sides by a, or equivalently,

1

we multiply both sides by %, to get the solution: & = — - b.

Why does this work? If * = % - b, then

az = a(+ - b)
=(a-%)b
=1b
=b

so ax really is equal to b, and we do have a solution to ax = b.

What is special about % which made this all work?

1. we have @ + % =1,
2.and 1b = b.

Now for an n. X k matrix B, we know that the identity matrix I, does the same sort of thing as 1 is doing in the

1

relation 1h = b: we have I, B = B for any n. X k matrix B. So instead of > we want to find a matrix C with the

property: AC' = I,. In fact, because matrix multiplication is not commutative, we also require that CA = I,. It's
then easy to argue that X = C - Bis a solutionto AX = B, since

AX = A(CB)
— (AC)B
=1I,B
= B.

Example revisited

O N

does have the property that

IfA= lo 1

2 4] , then the matrix C =
AC =1, = CA.
(You should check this!). So a solution to AX = B where B = lg é] is
-2(13 4 _ —8.5 —10
1 5 6 5 6 |

Notice that having found the matrix C, then we can solve AX = C easily for any 2 X 2 matrix C': the answer is

X=CB=

O =



X = CC. This is quicker than having to solve four new linear equations using our more tedious method above.
Definition: invertible

An m X m matrix A is invertible if there exists an n X m matrix C so that
AC =1, = CA.

The matrix C is called an inverse of A.

Examples
2 4 1 -2
« A= 0 1 is invertible, and the matrix C' = (2) is an inverse of A
e al x 1 matrix A = [a] is invertible if and only if @ # 0, and if @ # 0 then an inverse of A = [a] is

11
C=[Z]
o I, isinvertible for any 7, since I, - I, = I, = I, - I,,, so an inverse of I, is I,.
o 0,xn is not invertible for any 72, since Opxn, - C' = Opxn for any 7 X M matrix C, so Opxp - C # I,

1 0 a b a b
A [ 0 O] is not invertible, since for any 4 X 24 matrix C l c d] we have AC [ 0 0]

o 1 0f . .
which is not equal to Iy = [ 0 1 ] since the (2, 2) entries are not equal.

1 2
« A= [ 3 6] is not invertible. We'll see why later!

Proposition: uniqueness of the inverse

If A is an invertible ¢ X 7 matrix, then A has a unigue inverse.
Proof

Suppose C and C’ are both inverses of A. Then AC = I,, = CAand AC' = I, = C'A. So

C =CI, by the properties of I,
= C(AC') because AC' =1,
= (CA)C’ because matrix multiplication is associative
=I,C" because CA =1,
= C' by the properties of I,.

So C = (', whenever C and (' are inverses of A. So A has a unique inverse. m

Definition/notation: 4!

If A is an invertible 7 X 7 matrix, then the unique m X n matrix C with AC' = I,, = C A is called the inverse

of A. If A is invertible, then we write A~ to mean the (unique) inverse of A.

If a matrix A is not invertible, then A1 does not exist.

Warning

1

v doesn't make sense! You should never write this down. In particular, A1 definitely doesn't

If A is a matrix then

1
mean A



Similarly, you should never write down % where A and B are matrices. This doesn't make sense either!

Examples revisited

_ |2 4 -1 _
A—lo 1]hasA =
e al x 1 matrix A = [a] witha # 0 has [a] "} = [%]
e I =1,.

« 0,1 does not exist

1.0 - does not exist
0 0

1 2 - does not exist
-3 —6

QO N
—t

01

=

-1
-2
1 . In other words, [2 4] =
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Proposition: solving AX = B when A is invertible
If A is an invertible n X M matrix and B is an n X k matrix, then the matrix equation

AX =B

has a unique solution: X = A~1B.

Proof

First we check that X = A~1 B really is a solution to AX = B. To see this, note that if X = A~1 B, then

AX = A(A7'B)
= (447Y)B
=I,B
= B.

Now we check that the solution is unique. If X and Y™ are both solutions, then AX = B and AY = B, so
AX = AY.
Multiplying both sides on the left by A~1, we get
ATAX=ATAY = LLX=LY = X=Y.
So any two solutions are equal, so AX = B has a unique solution. m
Corollary
If Aisann X m matrix and there is a non-zero n X m matrix K so that AKX = 0, . then A is not invertible.

Proof

Since AOpyxm = Onxm and AK = 0y, xm, the equation AX = 0%, has (at least) two solutions: X = O, xm
and X = K. Since K is non-zero, these two solutions are different.

So there is not a unique solution to AX = B, for B the zero matrix. If 4 was invertible, this would contradict the
uniqueness statement of the last Proposition. So A cannot be invertible. m

Examples

« We can now see why the matrix A = [ 12 ] is not invertible. If X = [_12] and K = [_21 ] , then K is

-3 —6
non-zero, but AK = 0941. So A is not invertible, by the Corollary.
145 1
« A= l2 5 7] is not invertible, since K = [ 1 ] is non-zero and AK = 03y1.
369 -1

2 X 2 matrices: determinants and invertibility


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start

Question

Which 2 X 2 matrices are invertible? For the invertible matrices, can we find their inverse?
Lemma
IfA= [‘c‘ g] and J = [_dc _ab] , then we have
AJ =6, =JA
where § = ad — be.
Proof
This is a calculation (done in the lectures; you should also check it yourself). m

Definition: the determinant of a 2 X 2 matrix

The number ad — be is called the determinant of the 2 X 2 matrix A = [‘Z g] . We write det(A) = ad — be

for this number.

Theorem: the determinant determines the invertibility (and inverse) of a 2 X 2 matrix

Let A = [‘c‘ g] be a2 X 2 matrix.

1. A is invertible if and only if det(A) # 0.
.. . -1 __ 1 d —b
2. If A is invertible, then A~ = () [_c A ]
Proof

If A = 09x2, then det(A) = 0 and A is not invertible. So the statement is true is this special case.
Now assume that A 7~ Qg2x9 and let J = [_dc _ab] )

By the previous lemma, we have

AJ = (det(A)) L, = JA.

1

If det(A) # 0, then multiplying this equation through by the scalar do(d)’

we get

1 1

—— _J|l=L=(-—-J]4
det(A) 27 \ det(4) ’

1

det(A) J to make this look simpler, then we obtain

so if we write B =

AB =1, = BA,

so in this case A is invertible with inverse B = @) J = @ [_ 4 ]
If det(A) = 0, then AJ = 0253 and J # 0ax2 (since A 7# 03x2, and J is obtained from A by swapping two

entries and multiplying the others by —1). Hence by the previous corollary, A is not invertible in this case. m



Example

Let's solve the matrix equation [% _52 ] X = [g % 2] for X.

Write A = |1 5 |. Thendet(A) = 1(—2) — 5(3) = —2 — 15 = —17 which isn't zero, so A is invertible.
3 -2

-1_ 1 [-2-5|_11]25
And A7 = — [—3 1]_17 [3—1]'

P _ A-1|410| _ 1 |2 5 410 -1 |812 5
Hence the solutionis X = A [021]—17[ ][021]_ [ ]
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The transpose of a matrix

We defined this in tutorial sheet 4:

The transpose of an 1 X m matrix A is the m X 1 matrix AT whose (4, j) entry is the (§j, %) entry of A. In other
words, to get AT from A, you write the rows of A as columns, and vice versa; equivalently, you reflect A in its
main diagonal.

Forexamlea'bT—a'candl23T=;;1
Ple d| ~|b d 4 5 6 3 6

Exercise: simple properties of the transpose

Prove that for any matrix A:

. (AT)T = A; and
« (A+ B)T = AT + BT if A and B are matrices of the same size; and

In tutorial sheet 4, we proved:

Lemma: transposes and row-column multiplication

Ifaisal X mrow vector and bis anm X 1 column vector, then
ab=bTa".

Observation: the transpose swaps rows with columns

Formally, for any matrix A and any %, j, we have

row; (AT) = col; (4)7
col;(AT) = row;(A)T.

Theorem: the transpose reverses the order of matrix multiplication

If A and B are matrices and the mrr_;__a}_t_{j;_g__"p{_(_)"_c_l_}_l_q AB is defined, then BT AT is also defined. Moreover, in this case
we have

(AB)T = BT AT.
Proof

If AB is defined, then A is . X m and B ism X k for some n, m, k, so BT is k x m and AT ism X n, so
BT AT is defined. Moreover, in this case BT AT is an k x n matrix, and ABis an n X k matrix, so (AB)T isa
k x n matrix. Hence BT AT has the same size as (AB)T. To show that they are equal, we calculate, using the fact


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=same_size
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=scalar
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=matrix_product

that the transpose swaps rows with columns:

the (4, §) entry of (AB)T = the (j,1) entry of AB
= row;(A) - col;(B)
= col;(B)T -row;(A)T by the previous Lemma
= row; (BT) - col;(AT) by the Observation
= the (4, j) entry of BT AT

Hence (AB)T = BTAT. [

Determinants of n» X n matrices

Given any T X T matrix A, it is possible to define a number det(.A) (as a formula using the entries of A) so that
A is invertible <= det(A) # 0.

1. If Aisal X 1 matrix, say A = [a], then we just define det [a] = a.

2. If Aisa2 X 2 matrix, say A = Z’ il then we've seen that det(A) = ad — bc.
f[a b ¢
3.1f Aisa3 X 3matrix,say A = |d e f |, then it turns out that
h 1

L g
det(A) = aei —afh + bfg — bdi + cdh — ceg.
4.1f Ais a4 X 4 matrix, then the formula for det(A) is more complicated still, with 24 terms.
5.1f Aisab X 5 matrix, then the formula for det(A) has 120 terms.

Trying to memorise a formula in every case (or even in the 3 X 3 case!) isn't convenient unless we understand it
somehow. We will approach this is several steps.

Step 1: minors

Definition

If Aisanm X m matrix, then the (%, ) minor of A is defined to be the determinant of the (n — 1) X (n — 1)
matrix formed by removing row % and column J from A. We will write this number as Mj;.

Examples
e IfA = _34 ?] , then M7; = det[7] =7, My = det[—4] = —4, My; = 5, and M9y = 3.
1 2 3 1
s IfA=|7 8 9 ,thenM23=det[11 12]=1-12—2-11=—10and
11 12 13
1 3
My, = = —12.
32 detl7 9]

Step 2: cofactors

Definition



+
_|_

|+
+ 1+

o +
Note that (—1)”3 is +1 or —1, and can looked up in the matrix of signs: _ . This

matrix starts with a + in the (1, 1) entry (corresponding to (—1)1Jr1 = (—1)2 = +1) and the signs then
alternate.

Examples
3 5
e IfA= 4 7 ,then C1; = +My; = det[7] =7 C1a = —My = —det[—4] =4,
Coy = —-5, and Cyy = 3.
1 2 3
c1fA=|7 8 9| thenChs=—Mps =—(—10)=10and
11 12 13

1 2

I

Css = +M;3s = det[

Step 3: the determinant of a 3 X 3 matrix using Laplace expansion along the first row

Definition

a;ixz a2 a3
IfA= |ay az as | isad X 3matrix, then
asy a3 ass

det A = a11C11 + a12C12 + a13Chs.
Here Cij are the ggfgl_gg_(_)_{g_ of A.

This formula is called the Laplace expansion of det A along the first row, since ajj, @12 and @13 make up the first
row of A.

Example

1 2 3
det[7 8 9]=1°011+2C12—|-3C13
11 12 13
=1-(+My1) +2-(—Miz) +3- (+Mi3)
= My — 2Mi5 + 3M;3
8 9 7 9 7 8
=det[12 13]—2det[11 13]+3detl11 12]
—(8-13-9-12) —2(7-13—9-11) + 3(7-12 — 8- 11)
— 4 2(—8) +3(—4)
=—4+16—-12
= 0.

1 2 3
From this, we can conclude that | 7 8 9 | is notinvertible.
11 12 13
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Notation

To save having to write det all the time, we sometimes write the entries of a matrix inside vertical bars | | to mean the determinant of that
matrix. Using this notation (and doing a few steps in our heads), we can rewrite the previous example as:

1 2 3
8 9 7 9 7 8
7 8 9|= 1‘ ‘ — 2’ ’ + 3‘ ‘
11 12 13 12 13 11 13 11 12
=—4—2(—8)+3(—4)
=0.
Step 4: the determinant of an n. X n matrix
Definition
a1 a2 ... Gln
IfA= is an . X m matrix, then
Qnl Qn2 ... Qpp

det A = a11C11 + a12C12 + - - - + a1, Cin.

This formula is called the Laplace expansion of det A4 along the first row, since @11, @12, - - . , @1, Make up the first row of A.

Example

;gf_?’l 2 1 -1] |0 1 -1 02 1

> oo 1l=Yo o 1|02 0 1]|+22 0 1|-32 0 0

s 0 4 3 0 4 2 3 4 2 3 0 2 3 0 4
B 01_01_00_ 1 2 O\ _ofn o2 0| . 4|2 O
_1(2‘4 2’ 1‘0 2‘ 1‘0 4) 0+2( 2‘ ’3 OD 3(0 2‘3 4‘“‘3 OD
— 1(2(=4) — 0 — 0) + 2(—2(1) — 0) — 3(—2(8) + 0)
— _8_4+48
— 36.

Theorem: Laplace expansion along any row or column gives the determinant

1. For any fixed 4: det(A) = a;1 Cy1 + a42Cj2 + - + + a4 Cipn (Laplace expansion along row %)
2. For any fixed j: det(A) = ale’lj + azjozj +---+ anij‘ (Laplace expansion along column 7)

Example

We can make life easier by choosing expansion rows or columns with lots of zeros, if possible. Let's redo the previous example with this in
mind:

(:; g i —31 123
=-0+2/2 0 1{—-0+0

2 00 1 3 4 2

3 0 4 2

=2(—2‘Z ;"+0—1 ; ZD
~ 2(2(-8) - (-2)
— 36.

Definition: upper triangular matrices

An n X n matrix A4 is upper triangular if all the entries below the main diagonal are zero.


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start
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Definition: diagonal matrices

Ann X n matrix A is diagonal if the only non-zero entries are on its main diagonal.

Corollary: the determinant of upper triangular matrices and diagonal matrices

1. The determinant of an upper triangular 7 X 7 matrix is the product of its diagonal entries: det (A) = Q11022 ...Qnyp-
2. The determinant of an 72 X M diagonal matrix is the product of its diagonal entries: det(A) =a11022 ...0ny.

Proof

1. This is true for 7 = 1, trivially. For > 1, assume inductively that it is true for (n — 1) X (n — 1) matrices and use the Laplace
expansion of an upper triangular . X 7 matrix A along the first column of A to see that
det(A) = a31Cy1 + 0+ -+ - + 0 = @13 C1;1. Now Ci; is the determinant of the (n — 1) X (n — 1) matrix formed by removing
the first row and and column of A, and this matrix is upper triangular with diagonal entries @22, G33, . - » y @ng - By our inductive
assumption, we have C11 = @922033 . - . Gy SO det(A) = a11C11 = 411022033 . . . Ay as desired.

2. Any diagonal matrix is upper triangular, so this is a special case of statement 1. m

Examples

L. For any n, we havedet(I,) =1-1---1=1.
2. For any n, we have det(51,) = 5".

1 9 43 23434 4 132
0 3 43 2 —1423 -12
00 7 19 23 132
00 0 3 § o 1-3-7-2-(=1)-6 =252
00 0 © -1 —903
00 0 O 0 6

Theorem: important properties of the determinant

Let A be ann X 7 matrix.
1. Ais invertible if and only if det(A) # 0.

2. det(AT) = det(A)
3. If Bis another n. X 7 matrix, then det(AB) = det(A) det(B)

Theorem: row/column operations and determinants
Let A be ann X m matrix, let ¢ be a scalar and let 7 7 3.

Ap;_,z means A but with row ¢ replaced by .

1. If 4 # j, then det(ARic;rj) = — det(A) (swapping two rows changes the sign of det).
2. det (ARi—mRi) =c det(A) (scaling one row scales det(A) in the same way)
3. det (AR@'_> Ri+ch) = det(A) (adding a multiple of one row to another row doesn't change det (A))

¢ Also, these properties all hold if you change “row” into “column” throughout.
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Corollary
If an m X m matrix A has two equal rows (or columns), then det (A) = (), and A is not invertible.
Proof

If A has two equal rows, row 4 and row 7, then A = Ap;,pj So det(A) = det(Agriwr;j) = — det(A), so
2det(A) = 0,s0det(A) = 0.

If A has two equal columns, then AT has two equal rows, so det(A) = det (AT) =0.

In either case, det(A) = 0. So A is not invertible.m

Examples
0 0 2 4 0 0
 Swapping two rows changes the sign,so [0 3 0|=—|0 3 0|=—-4-3:-2=-24
4 0 O 0 0 2
e Multiplying a row or a column by a constant multiplies the determinant by that constant, so
2 4 6 10 1 2 3 5
5 0 O —10_250 0 -10
9 0 8 99| |9 0 81 99
1 2 3 4 1 2 3 4
1 2 3 5
B 10 0 -2
=2 59 0 81 99
1 2 3 4
1 2 3 5
B 1 00 —2
=259 09 1
1 2 3 4
1 1 3 5
B 100 —2
=2:5-9-2 1 0 9 11
1 1 3 4
1 1 1 5
B 1 0 0 —2
=2-5-9-2-3 10 3 11/
1 11 4

. det(ARl_)Rl_R4) = det(A), SO


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start

1 11 5 0 0 0 1
1 0 0
1 0 0 -2 1 0 0 —2|_
1 0 3 11 10311_11(1):;’4_0
1 11 4 1 11 4
_ |0 3| _ oy
- ‘1 1‘_ (=3) = 3.
e Hence
2 4 6 10 1 11 5
5 0 0 -10| _ 1 0 0 -2
9 0 81 99_2592310311
1 2 3 4 1 11 4
=2-5-9.-2-3-3=1620.
Corollary

If row; (A) = Cc-row; (A) for some ¢ 7 j and some ¢ € R, then det(A) = 0.
Proof

Note that row; (A) — ¢ - TOW; (A) =0.S0 AriRi_c Rj has a zero row, and by Laplace expansion along this
row we obtain det(ARi_)Ri_c Rj) =0.So det(A) = det(ARHRi_c Rj) =0.m

The effect of EROs on the determinant

We have now seen the effect of each of the three types of ERO on the determinant of a matrix:

1. swapping two rows of the matrix multiplies the determinant by —1. By swapping rows repeatedly, we are
able to shuffle the rows in an arbitrary fashion, and the determinant will either remain unchanged (if we used
an even number of swaps) or be multiplied by —1 (if we used an odd number of swaps).

2. multiplying one of the rows of the matrix by ¢ € R multiplies the determinant by ¢; and

3. replacing row j by “row § + € X (row %)”, where ¢ is a non-zero real number and 2 7 J does not change
the determinant.

Moreover, since det(A) = det(AT), this all applies equally to columns instead of rows.

We can use EROs to put a matrix into upper triangular form, and then finding the determinant is easy: just multiply
the diagonal entries together. We just have to keep track of how the determinant is changed by the EROs of types 1
and 2.

Example: using EROs to find the determinant


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=ero

1 31 3 1 3 1 3
4 8 0 12|_,1 2 0 3
01 3 6| 101 3 6
2 21 6 2 2 1 6
1 3 1 1
B 1 2 01
_430132
2 2 1 2
1 3 1 1
o0 =1 -1 0
1201 3 2
0 -4 -1 -0
1 3 1 1
_ o0 1 3 2
_120—1—10
0 -4 -1 0
1 3 1 1
_ o001 3 2
_120022
0 0 11 8
1 31 1
_ 50 1 3 2
_120022
0 0 0 -3
= —12(1)(1)(2)(-3) = 72.

Finding the inverse of an invertible n X n matrix
Definition: the adjoint of a square matrix

matrix C whose (%, §) entry is Cy;.

The adjoint of 4 is the n X m matrix J = C T, the transpose of the matrix of cofactors.

Example: n = 2
IfA= a b ,then C = d -—c ,sotheadjointofAisJ:CT = d -b )
c d b a —c a

Recall that AJ = (det A)Is = JA; we calculated this earlier when we looked at the inverse of a 2 X 2 matrix.

Hence fora 2 X 2 matrix A, ifdet A # 0, then A~ = ok
] , SO

Example: n = 3

_|_

3 1 0
IfA=|—-2 —4 3 |, then the matrix of signsis | —
5 4 -2

|+
+ 1+

_l_


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=cofactor
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[P P |
4 -2 5 —2 5 4
1 0 3 0 3 1 —4 1112
¢= _‘4 —2‘ '5 —2‘ _'5 4‘ =12 -6 -7
3 -9 -10
1 0 13 o0 3 1
] R B [ e
so the adjoint of A is
—4 2 3
J:C“Tzlll —6 —9].
12 -7 —10
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Example: n = 3

3 1 0 [+ — +
IfA=|—-2 —4 3 |,thenthe matrix of signsis | — 4+ —|,so
5 4 -2 |+ - +
[|—4 3 -2 3 —2 —4]
4 -2 5 -2 5 4 4
o ||t 0 3 0 31| _2
4 -2 5 -2 5 4 3
‘ 1 0‘ _‘ 3 0‘ ‘ 3 1 l
| |—4 3 -2 3 -2 —4
so the adjoint of A is
-4 2 3
J=CT"=]11 -6 -9 |.
12 -7 -10
3 1 0 —4 2 3 -1 0
Observethat AJ = | —=2 —4 3 11 -6 -9|=|0 -1
5 4 -2 12 -7 -10 0 0

—4 2 3 3 1 0 -1 0 O
JA= |11 -6 -9 -2 -4 3|=10 -1 0]|=-
12 -7 -10 5 4 -2 O 0 -1

This is an illustration of the following theorem, whose proof is omitted:

Theorem: key property of the adjoint of a square matrix

Corollary: a formula for the inverse of a square matrix

If Ais any n X n matrix with det(A) # 0, then A is invertible and

1
-1
"~ detA J

where J is the adjoint of A.
Proof
Divide the equation AJ = (det A)I,, = JAbydet A. u

Example

11 12

b _7]

-9 -10

0

0 ] = —1.13,and
-1

1-I3;and det(A) = —1.
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3 1 0 -4 2 3
Ifagainwetake A= | -2 —4 3 |[,thenJ =11 -6 —9 | anddet(A) = —1,50A4is

5 4 -2 12 -7 -10
4 -2 -3
invertible and A~ = —Ll J=—-J= [—11 6 9 ]
-12 7 10

A more efficient way to find 41

Given an @ X m matrix A, form the n X 2n matrix
|45 ]

and use EROs to put this matrix into RREF. One of two things can happen:

« Either you getarow of the form [0 0 ... 0| * * ... %] which starts with 7. zeros. You can then
conclude that A is not invertible.

¢ Or you end up with a matrix of the form [ I, ‘ B ] for some m X m matrix B. You can then conclude

that A4 is invertible, and A~ = B.

Examples

e Consider A = [; 2]

Conclusion: A4 is not invertible.

e Consider A = [; 3]

R2—R2—-2R1 [ 1 3 1 0 ]
e 4

—_—

o
[
I
[\V]
—

R-RI-3RL [ 1 o | 7 _3]

7 =3
-2 1|

Conclusion: A is invertible and A~ = [

3 1 0
e ConsiderA=|-2 —4 3 |.

5 4 =2
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3 1 0 1 0 O
AlL =] -2 -4 3 010
5 4 -210 0 1
R1-R1+R2 1 -3 3 |110
> -2 —4 3 0 1 0
| 5 4 —2]0 01
Re-R2+2RL,R3R3-5R1 | 1 —3 3 1 1 0
> 0 —-10 9 2 3 0

~
o
-
©
I
-
-3
I
(S}
I
(S
-

R2-+R2+2R3 1 -3 3,1 10

~
o
I
[l
—
I
ol
-
[l

RISRI43R2,R3>R3-10R2 | 1 0 0 | 4 -2 3

\
4

S
I
—
L
I
—t
—t
L

R2—R2+R3 10 0 4 -2 3
> 0O -1 0 11 -6 -9
i o 0 -1,12 -7 -10
R2-—R2, R3——R3 1 00| 4 -2 3
> 01 0, -11 6 9
i 0 0 1| -12 7 10
4 -2 37
Conclusion: A is invertible,and A~ = | =11 6 9
—-12 7 10

Chapter 3: Vectors and geometry

Recall that a2 X 1 column vector such as [ ] is a pair of numbers written in a column. We are also used to

3

writing points in the plane R? asa pair of numbersl; for example (4, 3) is the point obtained by starting from the
origin, and moving 4 units to the right and 3 units up.

3

We think of a (column) vector like ¥ = [ ] as an instruction to move 4 units to the right and 3 units up. This

movement is called “translation by v,

Examples



- 4
The vector v = [ 3] moves:

. (0,0t (4,3)
¢ (_21 6) to (21 9)
* (a:,y) to (a:+4,y—|—3).

It is convenient to not be too fussy about the difference between a point like (4, 3) and the vector l

. If we agree
3] g

to write points as column vectors, then we can perform algebra (addition, subtraction, scalar multiplication) as

discussed in Chapter 2, using points and column vectors.

For example, we could rewrite the examples above by saying that U = [ 3:| moves:

Joelol +[3] = 3]
e [3] [)-1G

dHRAEHERY

More generally: a column vector ¥ moves a point Z to Z + .
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Example

Which vector moves the point A = (—1,3) to B = (5, —4)?
Answer: we need a vector y with A +9 = B,sov =B — A = — = . We write

e )
in-[",

] , since this is the vector which moves A to B.

Definition of AB
If A and B are any points in R™, then the vector AB is defined by

AB=B- A

(where on the right hand side, we interpret the points as column vectors so we can subtract them to get a column
vector).

Thus A_’B is the vector which moves the point A to the point B.

Example
. 11 3 8
In R3, the points A = (3,—4,5)and B= (11,6,—2)have AB= | 6 | — | -4 | =] 10
-2 5 -7

The uses of vectors

Vectors are used in geometry and science to represent quantities with both a magnitude (size/length) and a
direction. For example:

e displacements (in geometry)
¢ velocities
e forces

Recall that a column vector moves points. Its magnitude, or length, is how far it moves points.
Definition: the length of a vector
U1

V2
Ifv= | is a column vector in R, then its magnitude, or length, or norm, is the number

13| = {/v3 +v3 +--- + V3.


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start

Examples

H Va2 +32=,/16+9=+v25=5

.
S l—ll_j

. =12+ 0+ (<22 +3° = yIT 04+ 9= VTl

3

Exercise
Prove that if ¢ € R is a scalar and U is a vector in R", then
led]| = [e] [|5]]-

That is, multiplying a vector by a scalar ¢ scales its length by |c|, the absolute value of ¢.
Remark
||[B || is the distance from point A to point B, since this is the length of vector which takes point A to point B.
Examples
« The distance from A = (1,2) to B = (—3,4) is

|AB| = [‘43] —[;] _‘24 (—4)2 4 22 = v/20 = 25,

e The length of the main diagonal of the unit cube in R3 is the distance between 0 = (0,0,0) and

1
A= (1,1,1), whichis || 0A] = ||| 1 ||| = V1* + 1> + 1% =
1

Scalar multiplication and direction

Multiplying a vector by a scalar changes its length, but doesn't change its direction.
Definition: unit vectors

A unit vector is a vector ¥ with ||5|| =1

Proposition: finding a unit vector in the same direction as a given vector

If ¥ is a non-zero vector, then W = W  is a unit vector (in the same direction as ).
Proof
Using the formula ||c¥|| = || ||9|| and the fact that ||D]| > 0, we have
]| —‘ = = [|7]| = == 9] = 1.
EIN I || || [

So 10 is a unit vector, and since it's scalar multiple of 0, it's in the same direction as ¥. m

Example



. . . - 1
What is unit vector in the same direction as ¥ = [ ?

2

We have ||'7)'|| = 12 + 22 = \/5, so the proposition tells us that is
ag_ g [1]_|1/VE
TRV 2//B

— . . . . . —
w = is a unit vector in the same direction as v.

Addition of vectors

If 0 = AB, then ¥ moves Ato B,so A+ v = B.
If w = BC, then @ moves Bto C,so B+ w = C.

What about ¥ + w? Wehave A+ 94+ w=B+w=C.Sov+w= AC.

This gives us the triangle law for vector addition: ¥, W and ¥ + W may be arranged to form a triangle:

Ll

rl

We get another triangle by starting at A and translating first by 20 and then by ; the other side of this triangle is
W + ¥. But we know that ¥ + W = W + 9! So we can put these two triangles together to get the parallelogram

law for vector addition:
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The dot product

Definition of the dot product

n w1
Letv=| , | andw = . be two (column) vectors in R™. The dot product of % and 11 is the real number
Un Wn,

¥ - W given by

VW =viwy +vowy + -+ + v, W,

Note that while ¥ and 0 are vectors, their dot product D - W is a scalar.

Example

19— [g] and @ = l_47],then'l_5-ﬁ§ m : l_‘ﬂ — 3(4) + 5(—7) = —23.

Properties of the dot product

For any vectors ¥, W and 4 in R™, and any scalar ¢ € R:

l.U-wW = W - (the dot product is commutative)
2Uu-(V+w)=u-9+u-w

3. (ct) - w=c(v-w

4.%5-9=|9]|? > 0,and B -3 =0 < ¥ = Opx1

The proofs of these properties are exercises.

Angles and the dot product

Theorem: the relationship between angle and the dot product
If ¥ and 0 are non-zero vectors in R™, then
?-w = ||v|| ||w]| cos@

where @ is the angle between ¥ and 0.

The proof will be given soon, but for now here is an example.

Example


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=row-column_product
http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=transpose

Ifv = [;] and W = |:_12:|,then5 - = 1(—2) + 2(1) = —2 4+ 2 = 0. On the other hand, we have
|13|| = V5= |||, so the angle @ between T and W satisfies
0=7-W=+/5x+5 Xxcosb

s05cosf =0,s0cos0 = 0,500 = 7/2 or @ = 3w/2 (measuring angles in radians). This tells us that the
angle between ¥ and 0 is a right angle. We say that these vectors are orthogonal. We can draw a convincing picture
which indicates that these vectors are indeed at right angles:

Proof of the Theorem

We wish to show that ¥ - @ = ||9|| ||®|| cos @ where 8 is the angle between ¥ and .

Recall the cosine rule [https://en.wikipedia.org/wiki/cosine rule]:

Ce—bfwz oy,

0\7‘: LL«\-Cz—zI:-Cc,,A

|
ST

Consider a triangle with two sides ¥ and . By the triangle rule for vector addition, the third side 2 has W + Z
,SO% = U — W:


https://en.wikipedia.org/wiki/cosine%20rule

Applying the cosine rule gives
1B —@)1* = IB]I* + [|@]* — 23| @] cosé.
On the other hand, we know that ||:_1§||2 =Z-T,50

15— B||* = (¥ — @) - (% — )
— DD — DT — BB
= |[6lI* + [l@]* — 20 - .
So
[B1* + [|B]1* — 2/15]| @] cos6 = |I5]|* + [|@]|* — 24 - @ cos.
Subtracting ||'1_5||2 + ||'LTJ||2 from both sides and dividing by —2 gives ¥ - @ = ||9|| ||w|| cos 6. m
Corollary

—

v-w

151l [l

If ¥ and 0 are non-zero vectors and @ is the angle between them, then cos 8 =

Corollary

If ¥ and W are non-zero vectors with ¥ - @ = (), then U and W are orthogonal: they are at right-angles.

Examples
1 3
1. The angle @ between 5 and | 4 has

B Y R

G ==

cosf =

s00 = cos™1(—1/4/5) ~ 2.03radians ~ 116.57°.
2. The points A = (2,3), B = (3,6) and C = (—4, 5) are the vertices of a right-angled triangle. Indeed,

oo |3 2] _ |1 o~ | —4] _|2]| _|-6
WehaveAB—lﬁ] |:3:|—|:3:| andAC—ls] l3]—l2],so
AB-AC = |::1; . _26] = 1(—6) + 3(2) = 0, so the sides AB and AC are at right-angles.



3. To find a unit vector orthogonal to the vector v = [ 2 ] , we can first observe that w = [ 1 :| has

VW = 0, so ¥ and W are orthogonal; and then consider the vector 4 = ﬁ W, which is a unit vector in
. . — . — — 1 —2 _2/'\/3 . .
the same direction as w, so is also orthogonal to v. Hence ¥ = —= = 18 a unit vector
v 1 1/ NG

- 1
orthogonal to v = [ 2] .

The orthogonal projection of one vector onto another

Let 1) be a non-zero vector, and let ¥ be any vector. We call a vector P the orthogonal projection of ¥ onto 0, and
write p = proj;, if

1. f)' is in the same direction as 4; and
2. the vector . = U — P joining the end of P to the end of ¥ is orthogonal to .

We can use these properties of P to find a formula for P in terms of ¥ and .

1. Since P is in the same direction as 4, we have p = cw for some scalar ¢ € R.
n

2. Since 74 = U — P is orthogonal to w0, we have 7t - @ = 0. Hence
(5-5) - @=0
— T @H-p-B=0
— ﬁ-ﬁ=5~@
— CTT]"IT]:'I_)"'&}
— o) =7
— AL
]|
So
D-w

P = Projzv = —— .
[

Wecalln =0 — projﬁﬁ the component of ¥ orthogonal to 0.
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Projd = = > W
|||

. 2-2-4 2
e
4

21 4

and the component of ¥ orthogonal to 0 is

I
| ro
—_
|
|—|/|‘\el
)
)—l|"'>
~_
1
|
bh'_\l\ﬂ
.

1 8/21
=2 |+[-4/21
e 16/21
29/21
= | 38/21
—5/21

The cross product of vectors in R3

Definition: the standard basis vectors

1 0 0
We define 7 = [O] , 7 = [ 1 ] and k = [O] . These are the standard basis vectors of ]R3.

0 0 1
u1
Note that any vector ¥ = | v9 | may be written as a linear combination of these vectors (that is, a sum of scalar
U3

multiplies of %, 7 and k), since

V1 U1 0 0 .
=|lv|=|0]|+|va|+| 0| =v174+v27 + v3k.
(% 0 0 (%]

<l


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start

Definition: the cross product

U1 wy
Ifp = [’02 ] and W = [w2 ] are vectors in R3, then we define ¥ X 0 to be the vector given by the

V3 w3
determinant

7k
V2 U3 |-
w w2 w3

|

VX W= v

[y

We interpret this determinant by expanding along the first row:

' ‘_j k V2 V3 (%] V3 (4] V2 |7, v2tls = U2
VXW=|vy; vy wv3|= - J k= —(’Ul'ws —'U3w1)
we Wsg w1 wWs w; W2
wp w2 w3 V1W2 — V2w

Example

7 K 3(-2) —1(-1) -5
ixw=|1 3 -1|=|-A(=2)-(-1)2)| =] 0
2 1 -2 1(1) — 3(2) =5
and
7 k 1(-1) — (-2)3 5
WxT=|2 1 —2|=[-(2(-1)-(-2)1)|=]0]|.
1 3 -1 2(3) — 1(1) 5
Observe that ¥ X W = —w X V. Moreover,
17 k 0] .
vxv=[1 3 —1|=(0]|=0
1 3 -1 0
and
17 k 0]
wxw=|2 1 —2|=[0]=0
2 1 -2 0

Example: cross products of standard basis vectors

We have
i 7k 0] .
iXj=[1 0 0|=|0] =k,
0 1 0 1



|77 E 1
ixk=l0o 1 o|l=|(0f=7%
0 0 1 | 0]
) i k| [O]
kxi=|0 0 1|=|[1|=7
1 0 of LO.
Proposition: properties of the cross product
For any vectors 4, U and W0 in R3 and any scalar ¢ € R, we have:
LUX (B4+®) =8 X0+8 XD
20 X W= —1 XV
3. (cv) X W =c(V X W) =7 X (cw)
49x0=0
59x0=0
6. D X 10 is orthogonal to both ¥ and
Proof
1. This is a tedious (but easy) bit of algebra.
2. Swapping two rows in a determinant changes the sign, so
T 7 k i3 k
w; w2 w3 V1 V2 U3

3. Scaling one row in a determinant scales the determinant in the same way, so

T 7 k i 7 Kk
(V) XW=|cv; cvs cvs|=Clvy vy wy|=COXW
w w2 w3 w w2 w3

4. The determinant of a matrix with a repeated row is zero.

5. The determinant of a matrix with a zero row is zero.
U1 U9 usg

6. Observe that U - (’1_5 X 'lT)) = |v1 w2 v3 | The determinant of a matrix with a repeated row is zero, so
w;p W2 W3

V1 V2 U3
@xwW)=|v; v2 w3|=0
w W2 Ws

el

so D is orthogonal to ¥ X 0; and similarly,

w w2 wy
E(ﬁxﬁ';): V1 V2 V3 =0
w1 W2 W3

s0 0 is orthogonal to ¥ X . m

Theorem



For any vectors ¥ and W in R3, we have
I3 B + @ @) = 13]* ]
The proof is a tedious but elementary calculation, which we leave as an exercise.
Corollary: the length of ¥ X W
For any vectors ? and W in TR?’, we have
17 x @|| = [|9]| ||w]| sin6
where 6 is the angle between v and w (with 0 < 6 < ).

Proof

Recall that ¥ - w = ||¥| ||| cos 6. Now

13 x |2 = ||3)|? @] — (3 - @)
= ||3]|? |@)|? — |7]?||@||>cos8
= ||5))? [|@]|? (1 — cos®8)

= [8]1* ||| *sin*8.
Since Va2 = aifa > 0 andsin@ > 0 for 0 < @ < T, taking square roots of both sides gives
19 x @ = [[5]| ||w] sin6. H
Geometry of the cross product

Let ¥ and 0 be vectors in R3.
The area of a triangle
Consider a triangle with sides  and % (and a third vector, namely ¥ — ). Thinking of  as the base, the length of

the base is b = ||5|| and the height of this triangle (measured at right angles to the base) is h = ||ﬂ')|| sin 6 where 0
is the angle between ¥ and .




Hence the area of this triangle is % bh = % ||7|| ||@|| sin @, which is equal to % |0 x @|| (by the formula for
||¥ x || which appears above).
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The area of a parallelogram

Consider a parallelogram, two of whose sides are % and 0.

This has double the area of the triangle considered above, so its area is ||U X @||.

Example
1 [ 2 ]
A triangle with two sides¥ = | 3 | and@ = | 1 | hasarea
-1 | —2 |
1 2 [—5] -1
% |9 x @|| = % 3 | x|1 = % 0 = g 0 = g V/2, and the parallelogram with sides ¥ and 10 has area
-1 -2 | —5 ] -1
I3 x @l = 5v2

The volume of a parallelepiped in R3

Let 7, ¥ and 0 be vectors in R3.

Consider a parallelepiped [https://en.wikipedia.org/wiki/parallelepiped], with three sides given by %, % and 1p.



http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start
https://en.wikipedia.org/wiki/parallelepiped

o N \X
‘ . W
” \ \\’ )
(F w /\\ T
- - K
T \\ \-7 —

Call the face with sides ¥ and W the base of the parallelpiped. The area of the base is A = ||’7)' X ’LT)H, and the volume of the parallelpiped is
Ah where h is the height, measured at right-angles to the base.

One vector which is at right-angles to the base is ¥ X W. It follows that h is the length of = PIrOjzy U, s0

h = ||projzzul = M" ol = M”ax,&;” _ M
T e xcal? 5 < a? o< al
so the volume is
u-(0xw
V= ah = |5 x ) 82D
|5 x ||

or
V=i @x )

Uy U2 Uj
Nowd- (U x W) =det| | v; wvo w3 , 50 V is the absolute value of this determinant:

w; w2 w3
Uy U2 ug
V= det m ()] V3 .
w; w2 w3



Example

Find volume of a parallelepiped whose vertices include A = (1,1,1), B = (2,1,3), C = (0,2,2) and D = (3,4, 1), where A is an
adjacent vertex to B, C and D.

Solution
. 1 . -1 . 2
The vectors AB= |0 |,AC = | 1 | and AD = | 3 | are all edges of this parallepiped, so the volume is
2 1 0
1 0 2
V= -1 1 1 =[1(0—3)—0+2(—-3—-2)| =|— 13| =13.
2 3 0

Planes and lines in R®

Recall that a typical plane in R3 has equation
ar+by+cz=d

where a, b, ¢, d are constants. If we write

a
n=|b
C
then we can rewrite the equation of this plane in the form
T
n-|ly| =d.
z

IfA= (:Bl, Y1, z1) and B = (wg » Y2, 22) are both points in this plane, then the vector A_'B is said to be in the plane, or to be parallel
to the plane. Observe that

5 T2 T T2 1
ﬁ'ABZFL' Y2 ) =’7l° Y2 —?L° n =d—d=0,
22 21 22 21
SO
n-v=0

for every vector ¥ in the plane. In other words: the vector 74 is orthogonal to every vector in the plane.

We call a vector with this property a normal vector to the plane.



Examples

1. Find a unit normal vector to the plane ¢ + y — 3z = 4.

1 1
Solution: The vector 74 = 1 | is a normal vector to this plane, so ¥ = ”71” n= 1 | is aunit normal vector to this plane.
n
-3 -3

Indeed, v is a unit vector and it's in the same direction as the normal vector 73, so U is also a normal vector.

8-
=

1

2. Find the equation of the plane with normal vector | —3 | which contains the point (1, -2, 1). Then find three other points in this plane.

2

Solution: the equation is £ — 3y + 2z = d, and we can find d by subbing in (z,y, 2) = (1,—2,1): 1 — 3(—2) + 2(1) = d, so
d = 9 and the equation of the plane is

z—3y+22=09.

Some other points in this plane are (9, 0, 0), (0,1, 6), (1,1, 1—21) (We can find these by inspection).

1 1
3. Find the equation of the plane parallel to the vectors | 1 | and | —1 | containing the point (3,0, 1).
1 1
1 1 1 2
Solution: anormal vectorisn = [1]| x | =1 | = y1 [111-11= | 0 [, so the equation is
1 1 21 -2

20 +0y—22=2(3)—2(1) =4 or2z —2z=4,orx —2=2.
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4. Find the equation of the plane containing the points A = (1,2,0), B = (3,0,1) and C = (4, 3, —2).

2 3
Solution: AB = | —2 | and AC = 1 are both vectors in this plane. We want to find a normal vector 73
1 -2

which is be orthogonal to both of these. The cross product of two vectors is orthogonal to both, so we can take the
cross product of ffB and AC:

N & A 3
n=ABxAC=|92 _92 1 |=|7
3 1 =2 8

so the equation of the plane is 3z + 7y + 82z = d, and we find d by subbing in a point in the plane, say
A = (1,2,0), which gives d = 3(1) + 7(2) + 8(0) = 17. So the equation is

3z +Ty+8z=17.
Orthogonal planes and parallel planes

Let II; be a plane with normal vector 721, and let IT5 be a plane with normal vector 7ig.

1. II; and IIy are orthogonal or perpendicular planes if they meet at right angles. The following conditions are
equivalent:
a. II; and Ils are orthogonal planes;
b. 11 - g = 0;
c. 7 is a vector in Ily;
d. Mg is a vector in IT; .
2. II; and I, are parallel planes if they have the same normal vectors. In other words, if I has equation
ax + by + cz = dj then any parallel plane II3 has an equation with the same left hand side:
ar +by+ cz=ds.

Examples

1. Find the equation of the plane II passing through A = (1,3, —3) and B = (4, —2, 1) which is orthogonal to
the planex — y + 2 = 5.

1
Solution: The plane & — Y + z = 5 has normal vector | —1 |, so this is a vector in II. Moreover,
1
. 3
AB = | —5 | is also a vector in I, so it has normal vector
4
1 3 T 7 k 1
n=|-1|x|-5]=[1 -1 1|=|-1
1 4 3 -5 4 -2

So the equation of TTis & — y — 22 = d and subbingin A = (1,3, —3) givesd =1 — 3 — 2(—3) =4, s0


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start

the equation of IT is
x—y—2z=4.

2. The plane parallel to 2z — 4y + 5z = 8 passing through (1,2, 3) is
2z — 4y + 5z = 2(1) — 4(2) + 5(3) = 10, or 2z — 4y + 5z = 10.

3. Find the equation of the plane IT which contains the line of intersection of the planes
I:z—y+2z=1 and IIy:3zx+2y—2=4,
and is perpendicular to the plane I3 : 22 + y + z = 3.

Solution: To find the line of intersection of II; and Il5, we must solve the system of linear equations

z—y+2z=1
3z + 2y — z=4.
- . . . -1 2 1
We can solve this linear system in the usual way, by applying EROs to the matrix 3 9 1 4 :
(1 -1 2 1]
3 2 -1 4
R2—R2-3R1 (1 -1 2 1]
“l0 5 -7 1]
R1-55R1+R2 (5 0 3 6
"0 5 -7 1
Rl» 1 RLR» T R2 T
5 577 (1 0 3/5 6/5
’ 1 -7/5 1/5
So the line I of intersection is given by
L} [_ 3
M 5 5
L yl| = % +t % , teR.
Z 0 1
_3 _ 37
5 5 -3 -3
So % is a direction vector along L, and also % = | 7 |isavectoralong L.So | 7 | isa
1 1 | 5 5
vector in the plane IT. Moreover, taking £ = 2 gives the point (0, 3, 2) in the line L, so this is a point in II.
2 2
Since I is perpendicular to IT3, which has normal vector i3 = | 1 |, the vector | 1 | isin IL
1 1
So a normal vector for IT is
2 -3 i 7k —2
n=|1|x|7|=|l2 1 1/=1]-13
1 5 -3 7 5 17



hence T has equation —2x — 13y + 172 = d, and subbing in the point (0, 3, 2) gives
d=0-—13(3) +17(2) = —39 + 34 = —5, so II has equation —2 — 13y + 172 = —5, or

2¢ + 13y — 17z = 5.
The distance to a plane

The distance from a point to a plane

a

Let IT be a plane in R3 with equation ax + by + cz = d, so that n = | b | is a normal vector to IT. Also let A
C

be any point in R3.

The shortest path from A to a point in IT goes in the same direction as 72. Let B be any point in the plane IT.

/h;’a

From the diagram, we see that the shortest distance from A to IT is given by

dist(A4, II) = ||p||

where
p= projﬁXB.
Using the formula for proj,;v and the fact that ||¢9|| = |c| ||9|| where ¢ is a scalar and ¥ is a vector, we obtain the
formula
ii- AB
aist(4,m) = 251
1721
Example

To find the distance from A = (1, —4, 3) to the plane Il : 2 — 3y 4 6z = 1, choose any point B in II; for
2 1

example, let B = (2, 1, 0). Thenn = | =3 | andAB=| 5 |, so
6 -3



. AB 2(1) + (—3)5 + 6(—3 —31
dist(A,H)Zln | _ 12(1) +(=3)5+6(-3)| _ | |:3_1.
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Remark: the distance from the origin to a plane

If we write 0 = (0, 0, 0) for the origin in R® and apply the formula above to the plane IT : ax + by + cz = d
with B = (d/a, 0, 0) (assuming that @ # 0) then we obtain

d
dist(0,II) = —|_,|
Il
a
where 7 is the normal vector i = | b
C

So as d varies (with the normal vector 72 fixed), we obtain parallel planes at different distances to the origin 0; the
larger d is, the further the plane is from 0.

The distance between parallel planes

If IT; and Ilg are parallel planes, then the shortest distance between them is given by
diSt(Hl s Hz) = diSt(A, Hz)

for any point A is IT; . The reason is that for parallel planes, changing A to a different point in II; does not change
diSt(A, 1-.[2 ) .

Of course, if the planes II; and IIy are not parallel, then they intersect (in many points: in a whole line). So for non-
parallel planes we always have dist(II;,II;) = 0.

Example

The distance between the planes 3z + 4y — 2z = b and 3z + 4y — 3z = 1 is 0, since the normal vectors
3 3

4 and 4 are not scalar multiples of one another, so they are in different directions, so the planes are not

-2 -3
parallel.
Example
3
The planes Iy : 3z 4+ 4y — 22 = Hand Il : 3z + 4y — 2z = 1 have the same normal vector | 4 |, so
-2

they are parallel. Their distance is given by dist(A, Hz) where A is any point in II;, and to find this we also need
apoint BinII,.

We can choose A = (1,0, —1) € II; and B = (1,0, 1) € II. (Of course, there are lots of different possible
0
choices here, but they should all give the same answer!) Then AB = | 0 | and

2


http://mathsci.ucd.ie/~levene/w/mst10030/doku.php?id=start

7i-AB 0+0+(—2)2 4
diSt(Hl,Hz) :dist(A,Hz) — |n | — | + +( ) | _

”n” B \/32 _|_42 + (_2)2 \/E .

Exercise: a formula for the distance between parallel planes

Show that the distance between the parallel planes IT; : ax + by +cz=dy andIls : ax + by +cz=dsis

dy —d
dist(II;, II,) = MH*TH”

a
wheren = | b
C

Example

To find the distance between £ + 3y — 5z = 4 and 2z + 6y — 10z = 11 we can rewrite the second equation as

1
& + 3y — 5z = 11/2 to see that this is a parallel plane to the first, with common normal vector# = | 3 |.By
-5
the formula in the exercise the distance between these planes is
11 3
| 5 — 4 E; 3

The distance from a point to a line

Suppose L is a line in R3. Let A be a point on L and let ¥ be a direction vector along L.

Given a point B, how can we find d = dist(B, L), the (shortest) distance from the point B to the line L?

Let A be any point in L and let @ be the angle between AB and ©. We have



~ AB|| ||3| sin 6 ABx ¥
i simg = 1A [Flsing _ 4B x5
Il Il
So
. |4B % 3|
dist(B,L) = ————
Il
where A is any point in L.
Example
To find the distance from the point B = (1, 2, 3) to the line
T 4
Y 1 , teR
z -
1 0 [ 4
we can choose A = 0 so that AB 2| and takmg'v = 1 |, we obtain
-1 4 | —5
. 7 k ~14 —7
ABxv=|g 2 41|=]|16 | =2]| 8
4 1 -5 —8 —4
S0
ABx3| 2/ 18142 2/12
dist(B,1) = JABXOI _ VT +8 447 V129 4 0
1] VA2 + 12 + 52 VA2
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The distance from a point to a line

Alternative method

The method above relies on the cross product, so only works in R3. The following alternative method works in R™
for any n.

Observe that dist(B, L) is the length of the vector 73 = AB - P where p = projy AB.
Example

Let's redo the previous example using this method.

. 0 4
Wehave AB= |2 | andD= | 1 |[,s0
4 -5

- S 4 4 4
. . AB-%\. 0(4) +2(1) +4(-5) 18 3
= I'O.BABZ — | = 1 = — — 1 = — — 1 R
PP ( EE ) 21215 12 7

SO
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1 1
dist(B, L) = [1Al| = = V122 +17% +13% = = /602 ~ 3.5051.

The distance between skew lines in R>

Suppose that L; and L9 are skew lines in R3: lines which are not parallel and do not cross.

Let U1 be a direction vector along L1, and let ¥y be a direction vector along L.
-
n — L.'L

A Vi

3 L,

The shortest distance from Ly and L9 is measured along the direction orthogonal to both U3 and Vg, namely the
direction of . = U; X V3.

Let IT be the plane with normal vector 7. which contains L7 .



For any point B in Ly, we have

AB-#
dist(L1, Ly) = dist(B, II) = %
n

where A is any point in IT; for example, we can take A to be any point in Ly .

To summarise: for skew lines L1 and Ly with direction vectors ¥ and U5, we have

dist(Ly, Ly) = ———

where . = V1 X Uy and A and B are points with one in L and the other in L.

Remark

What about the distance between lines which are not skew? This means that either they are non-parallel and they

intersect (so that the distance between them will be zero), or the are parallel lines.

o The same method and formula work if L1 and L9 are non-parallel lines which intersect, and you get

dist(Ly, Lg) = 0 in this case. The reason is that in this case L; and Lg will lie in one plane, IT, and AB

will also be in IT, and 7 will be orthogonal to IT. So ‘Tlg”ﬁ = ﬁ = 0 = dist(Ly, Ly).

If Ly and Ly are parallel lines (i.e., if the vectors Uy and Dy along the lines are in the same direction), then
V1 X ¥y = 0 which isn't helpful, so this method won't work here. In this case, observe that

dist(Ly, Ls) = dist(A, Ly) where A is any point in L1 (because the lines are parallel), so you can use
one of the formulae above for the distance from a point to a line.

Example

Consider the skew lines



r=1+4+1t
Li: y=24 (tl ER)
z=1+4 3t

T 3 1
Ly: ly|=12|+t|-1], teekR
z 1 1

Note that we can rewrite the equation of Ly in “vector form™, which is easier to digest:

T 1 1
Ly yl =10 +t12], 4 eR
z 1 3

1 [ 1
The direction vectors are [2] and | —1 ] , so we take 72 to be their cross product:
3 1

and

(1 1 i 7 k 5
2| X |-1|=1 2 3(=| 2
| 3 1 1 -1 1 -3

andif A = (1,0,1) and B = (3,2, 1) then A and B are points with one in L1 and the other in Lg, and

. 2
AB = | 2 |.Hence

0

=T
I

AB-@|  2(5)+2(2) +0(—3
dist(Ll,L2)=| ﬁ”|= (5) +2(2) +0(-3) _ 14
Il 52 4+ 92 1 32 /38
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