User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_18

This is an old revision of the document!



Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/action.php on line 14

The dot product

Definition of the dot product

Let $\def\m#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}\vec v=\m{v_1\\v_2\\\vdots\\v_n}$ and $\vec w=\m{w_1\\w_2\\\vdots\\w_n}$ be two vectors in $\mathbb{R}^n$.

The dot product of $\vec v$ and $\vec w$ is the number $\vec v\cdot \vec w$ given by \[ \color{red}{\vec v\cdot\vec w=v_1w_1+v_2w_2+\dots+v_nw_n}.\]

Note that while $\vec v$ and $\vec w$ are vectors, their dot product $\vec v\cdot \vec w$ is a scalar.

Example

If $\vec v=\m{3\\5}$ and $\vec w=\m{4\\-7}$, then $\vec v\cdot \vec w=\m{3\\5}\cdot \m{4\\-7} = 3(4)+5(-7)=-23$.

Properties of the dot product

For any vectors $\vec v$, $\vec w$ and $\vec u$ in $\mathbb{R}^n$, and any scalar $c\in \mathbb{R}$:

  1. $\def\dp#1#2{\vec #1\cdot \vec #2}\dp vw=\dp wv$ (the dot product is commutative)
  2. $\vec u\cdot(\vec v+\vec w)=\dp uv+\dp uw$
  3. $(c\vec v)\cdot \vec w=c(\dp vw)$
  4. $\dp vv=\|\vec v\|^2\ge 0$, and $\dp vv=0 \iff \vec v=0_{n\times 1}$

The proofs of these properties are exercises.

Angles and the dot product

Theorem: the relationship between angle and the dot product

If $\vec v$ and $\vec w$ are non-zero vectors in $\mathbb{R}^n$, then \[ \dp vw=\|\vec v\|\,\|\vec w\|\,\cos\theta\] where $\theta$ is the angle between $\vec v$ and $\vec w$.

The proof will be given soon, but for now here is an example.

Example

If $\vec v=\m{1\\2}$ and $\vec w=\m{-2\\1}$, then $\dp vw=1(-2)+2(1)=-2+2=0$. On the other hand, we have $\|\vec v\|=\sqrt5=\|\vec w\|$, so the angle $\theta$ between $\vec v$ and $\vec w$ satisfies \[ 0=\dp vw=\sqrt 5\times \sqrt 5 \times \cos\theta\] so $5\cos\theta=0$, so $\cos\theta=0$, so $\theta=\pi/2$ or $\theta=3\pi/2$ (measuring angles in radians). This tells us that the angle between $\vec v$ and $\vec w$ is a right angle. We say that these vectors are orthogonal. We can draw a convincing picture which indicates that these vectors are indeed at right angles:

lecture_18.1459848392.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki