This is an old revision of the document!
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/action.php on line 14
Table of Contents
Remark
$\|\vec{AB}\|$ is the distance from point $A$ to point $B$, since this is the length of vector which takes point $A$ to point $B$.
Examples
- The distance from $A=(1,2)$ to $B=(-3,4)$ is $\|\def\m#1{\begin{bmatrix}#1\end{bmatrix}}\vec{AB}\|=\left\|\m{-3\\4}-\m{1,2}\right\|=\left\|\m{-4\\2}\right\|=\sqrt{(-4)^2+2^2}=\sqrt{20}=2\sqrt{5}$.
- The length of the main diagonal of the unit cube in $\mathbb{R}^3$ is the distance between $0=(0,0,0)$ and $A=(1,1,1)$, which is $\|\vec{0A}\|=\left\|\m{1\\1\\1}\right\|=\sqrt{1^2+1^2+1^2}=\sqrt3$.
Scalar multiplication and direction
Multiplying a vector by a scalar changes its length, but doesn't change its direction.
Definition: unit vectors
A unit vector is a vector $\vec v$ with $\|\vec v\|=1$.
Proposition: finding a unit vector in the same direction as a given vector
If $\vec v$ is a non-zero vector, then $\vec w=\frac1{\|\vec v\|}\vec v$ is a unit vector (in the same direction as $\vec v$).
Proof
Using the formula $\|c\vec v\|=|c|\,\|\vec v\|$ and the fact that $\|\vec v\|>0$, we have \[ \|\vec w\|=\left\|\frac1{\|\vec v\|}\vec v\right\|=\left|\frac1{\|\vec v\|}\right|\,\|\vec v\|=\frac1{\|\vec v\|}\,\|\vec v\| = 1.\] So $\vec w$ is a unit vector, and since it's scalar multiple of $\vec v$, it's in the same direction as $\vec v$. ■
Example
What is unit vector in the same direction as $\vec v=\m{1\\2}$?
We have $\|\vec v\|=\sqrt{1^2+2^2}=\sqrt5$, so the proposition tells us that is $\vec w=\frac1{\|\vec v\|}\vec v = \frac1{\sqrt 5}\vec v=\frac1{\sqrt5}\m{1\\2}=\m{1/\sqrt{5}\\2/\sqrt5}$ is a unit vector in the same direction as $\vec v$.
