This is an old revision of the document!
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/action.php on line 14
Table of Contents
Example: $n=2$, general case
If $A=\def\mat#1{\begin{bmatrix}#1\end{bmatrix}}\def\vm#1{\begin{vmatrix}#1\end{vmatrix}}\mat{a&b\\c&d}$, then $C=\mat{d&-c\\-b&a}$, so the adjoint of $A$ is $J=C^T=\mat{d&-b\\-c&a}$.
Recall that $AJ=(\det A)I_2=JA$; we calculated this earlier when we looked at the inverse of a $2\times 2$ matrix. Hence for a $2\times 2$ matrix $A$, if $\det A\ne0$, then $A^{-1}=\frac1{\det A}J$.
Example: $n=3$
If $\def\mat#1{\begin{bmatrix}#1\end{bmatrix}}A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$, then the matrix of signs is $\mat{+&-&+\\-&+&-\\+&-&+}$, so \[\def\vm#1{\begin{vmatrix}#1\end{vmatrix}} C=\mat{ \vm{-4&3\\4&-2}&-\vm{-2&3\\5&-2}&\vm{-2&-4\\5&4}\\ -\vm{1&0\\4&-2}&\vm{3&0\\5&-2}&-\vm{3&1\\5&4}\\ \vm{1&0\\-4&3}&-\vm{3&0\\-2&3}&\vm{3&1\\-2&-4}} = \mat{-4&11&12\\2&-6&-7\\3&-9&-10}\] so the adjoint of $A$ is \[ J=C^T=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}.\]
Observe that $AJ=\mat{3&1&0\\-2&-4&3\\5&4&-2}\mat{-4&2&3\\11&-6&-9\\12&-7&-10}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$, and $JA=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}\mat{3&1&0\\-2&-4&3\\5&4&-2}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$; and $\det(A)=-1$.
This is an illustration of the following theorem, whose proof is omitted:
Theorem: key property of the adjoint of a square matrix
If $A$ is any $n\times n$ matrix and $J$ is its adjoint, then $AJ=(\det A)I_n=JA$.
Corollary: a formula for the inverse of a square matrix
If $A$ is any $n\times n$ matrix with $\det(A)\ne 0$, then $A$ is invertible and \[A^{-1}=\frac1{\det A}J\] where $J$ is the adjoint of $A$.
Proof
Divide the equation $AJ=(\det A)I_n=JA$ by $\det A$. ■
Example
If again we take $A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$, then $J=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}$ and $\det(A)=-1$, so $A$ is invertible and $A^{-1}=\frac1{-1}J=-J=\mat{4&-2&-3\\-11&6&9\\-12&7&10}$.
Example ($n=4$)
Let $A=\mat{1&0&0&0\\1&2&0&0\\1&2&3&0\\1&2&3&4}$.
Recall that a matrix with a repeated row or a zero row has determinant zero. We have \[C=\mat{+\vm{2&0&0\\2&3&0\\2&3&4}&-\vm{1&0&0\\1&3&0\\1&3&4}&+0&-0\\-0&+\vm{1&0&0\\1&3&0\\1&3&4}&-\vm{1&0&0\\1&2&0\\1&2&4}&+0\\+0&-0&+\vm{1&0&0\\1&2&0\\1&2&4}&-\vm{1&0&0\\1&2&0\\1&2&3}\\-0&+0&-0&+\vm{1&0&0\\1&2&0\\1&2&3}}=\mat{24&-12&0&0\\0&12&-8&0\\0&0&8&-6\\0&0&0&6}\] so \[J=C^T=\mat{24&0&0&0\\-12&12&0&0\\0&-8&8&0\\0&0&-6&6}.\] Since $A$ is lower triangular, its determinant is given by multiplying together its diagonal entries: $\det(A)=1\times 2\times 3\times 4=24$. (Note that even if $A$ was not triangular, $\det A$ can be easily found from the matrix of cofactors $C$ by summing the entries of $A$ multiplied by the entries of $C$ (i.e., the minors) along any row or column.)
So \[A^{-1}=\frac1{\det A}J = \frac1{24}\mat{24&0&0&0\\-12&12&0&0\\0&-8&8&0\\0&0&-6&6}=\mat{1&0&0&0\\-1/2&1/2&0&0\\0&-1/3&1/3&0\\0&0&-1/4&1/4}.\] You should check that this really is the inverse, by checking that $AA^{-1}=I_4=A^{-1}A$.
A more efficient way to find $A^{-1}$
Given an $n\times n$ matrix $A$, form the $n\times 2n$ matrix \[ \def\m#1{\left[ \begin{array}{@{} c|c {}@} % it does autodetection #1 \end{array} \right]}\m{A&I_n}\] and use EROs to put this matrix into RREF. One of two things can happen:
- Either you get a row of the form $[0~0~\dots~0~|~*~*~\dots~*]$ which starts with $n$ zeros. You can then conclude that $A$ is not invertible.
- Or you end up with a matrix of the form $\m{I_n&B}$ for some $n\times n$ matrix $B$. You can then conclude that $A$ is invertible, and $A^{-1}=B$.
Examples
- Consider $A=\def\mat#1{\begin{matrix}#1\end{matrix}}\left[\mat{1&3\\2&6}\right]$. \begin{align*}\m{A&I_2}&=\m{\mat{1&3\\2&6}&\mat{1&0\\0&1}} \def\go#1#2{\m{\mat{#1}&\mat{#2}}} \def\ar#1{\\[6pt]\xrightarrow{#1}&} \ar{R2\to R2-2R1}\go{1&3\\0&0}{1&0\\-2&1} \end{align*} Conclusion: $A$ is not invertible.
- Consider $A=\left[\mat{1&3\\2&7}\right]$.\begin{align*}\m{A&I_2}&=\m{\mat{1&3\\2&7}&\mat{1&0\\0&1}} \ar{R2\to R2-2R1}\go{1&3\\0&1}{1&0\\-2&1} \ar{R1\to R1-3R1}\go{1&0\\0&1}{7&-3\\-2&1} \end{align*} Conclusion: $A$ is invertible and $A^{-1}=\left[\mat{7&-3\\-2&1}\right]$.
- Consider $A=\left[\mat{3&1&0\\-2&-4&3\\5&4&-2}\right]$.\begin{align*}\m{A&I_3}&=\go{3&1&0\\-2&-4&3\\5&4&-2}{1&0&0\\0&1&0\\0&0&1} \ar{R1\to R1+R2} \go{1&-3&3\\-2&-4&3\\5&4&-2}{1&1&0\\0&1&0\\0&0&1} \ar{R2\to R2+2R1,\ R3\to R3-5R1} \go{1&-3&3\\0&-10&9\\0&19&-17}{1&1&0\\2&3&0\\-5&-5&1} \ar{R3\leftrightarrow R2} \go{1&-3&3\\0&19&-17\\0&-10&9}{1&1&0\\-5&-5&1\\2&3&0} \ar{R2\to R2+2R3} \go{1&-3&3\\0&-1&1\\0&-10&9}{1&1&0\\-1&1&1\\2&3&0} \ar{R1\to R1+3R2,\ R3\to R3-10R2} \go{1&0&0\\0&-1&1\\0&0&-1}{4&-2&3\\-1&1&1\\12&-7&-10} \ar{R2\to R2+R3} \go{1&0&0\\0&-1&0\\0&0&-1}{4&-2&3\\11&-6&-9\\12&-7&-10} \ar{R2\to -R2,\ R3\to -R3} \go{1&0&0\\0&1&0\\0&0&1}{4&-2&3\\-11&6&9\\-12&7&10} \end{align*} Conclusion: $A$ is invertible, and $A^{-1}=\left[\mat{4&-2&3\\-11&6&9\\-12&7&10}\right]$.
Chapter 3: Vectors and geometry
Recall that a $2\times 1$ column vector such as $\def\m#1{\begin{bmatrix}#1\end{bmatrix}}\m{4\\3}$ is a pair of numbers written in a column. We are also used to writing points in the plane $\mathbb R^2$ as a pair of numbersl; for example $(4,3)$ is the point obtained by starting from the origin, and moving $4$ units to the right and $3$ units up.
We think of a (column) vector like $\vec v=\m{4\\3}$ as an instruction to move $4$ units to the right and $3$ units up. This movement is called “translation by $\vec v$”.
Examples
The vector $\vec v=\m{4\\3}$ moves:
- $(0,0)$ to $(4,3)$
- $(-2,6)$ to $(2,9)$
- $(x,y)$ to $(x+4,y+3)$.
It is convenient to not be too fussy about the difference between a point like $(4,3)$ and the vector $\m{4\\3}$. If we agree to write points as column vectors, then we can perform algebra (addition, subtraction, scalar multiplication) as discussed in Chapter 2, using points and column vectors.
For example, we could rewrite the examples above by saying that $\vec v=\m{4\\3}$ moves:
- $\m{0\\0}$ to $\m{0\\0}+\m{4\\3}=\m{4\\3}$
- $\m{-2\\6}$ to $\m{-2\\6}+\m{4\\3}=\m{2\\9}$
- $\m{x\\y}$ to $\m{x\\y}+\m{4\\3}=\m{x+4\\y+3}$.
More generally: a column vector $\vec v$ moves a point $\vec x$ to $\vec x+\vec v$.
