User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_16

This is an old revision of the document!



Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/action.php on line 14

Example: $n=2$, general case

If $A=\def\mat#1{\begin{bmatrix}#1\end{bmatrix}}\def\vm#1{\begin{vmatrix}#1\end{vmatrix}}\mat{a&b\\c&d}$, then $C=\mat{d&-c\\-b&a}$, so the adjoint of $A$ is $J=C^T=\mat{d&-b\\-c&a}$.

Recall that $AJ=(\det A)I_2=JA$; we calculated this earlier when we looked at the inverse of a $2\times 2$ matrix. Hence for a $2\times 2$ matrix $A$, if $\det A\ne0$, then $A^{-1}=\frac1{\det A}J$.

Example: $n=3$

If $\def\mat#1{\begin{bmatrix}#1\end{bmatrix}}A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$, then the matrix of signs is $\mat{+&-&+\\-&+&-\\+&-&+}$, so \[\def\vm#1{\begin{vmatrix}#1\end{vmatrix}} C=\mat{ \vm{-4&3\\4&-2}&-\vm{-2&3\\5&-2}&\vm{-2&-4\\5&4}\\ -\vm{1&0\\4&-2}&\vm{3&0\\5&-2}&-\vm{3&1\\5&4}\\ \vm{1&0\\-4&3}&-\vm{3&0\\-2&3}&\vm{3&1\\-2&-4}} = \mat{-4&11&12\\2&-6&-7\\3&-9&-10}\] so the adjoint of $A$ is \[ J=C^T=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}.\]

Observe that $AJ=\mat{3&1&0\\-2&-4&3\\5&4&-2}\mat{-4&2&3\\11&-6&-9\\12&-7&-10}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$, and $JA=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}\mat{3&1&0\\-2&-4&3\\5&4&-2}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$; and $\det(A)=-1$.

This is an illustration of the following theorem, whose proof is omitted:

Theorem: key property of the adjoint of a square matrix

If $A$ is any $n\times n$ matrix and $J$ is its adjoint, then $AJ=(\det A)I_n=JA$.

Corollary: a formula for the inverse of a square matrix

If $A$ is any $n\times n$ matrix with $\det(A)\ne 0$, then $A$ is invertible and \[A^{-1}=\frac1{\det A}J\] where $J$ is the adjoint of $A$.

Proof

Divide the equation $AJ=(\det A)I_n=JA$ by $\det A$. ■

Example

If again we take $A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$, then $J=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}$ and $\det(A)=-1$, so $A$ is invertible and $A^{-1}=\frac1{-1}J=-J=\mat{4&-2&-3\\-11&6&9\\-12&7&10}$.

A more efficient way to find $A^{-1}$

Given an $n\times n$ matrix $A$, form the $n\times 2n$ matrix \[ \def\m#1{\left[ \begin{array}{@{} c|c {}@} % it does autodetection #1 \end{array} \right]}\m{A&I_n}\] and use EROs to put this matrix into RREF. One of two things can happen:

  • Either you get a row of the form $[0~0~\dots~0~|~*~*~\dots~*]$ which starts with $n$ zeros. You can then conclude that $A$ is not invertible.
  • Or you end up with a matrix of the form $\m{I_n&B}$ for some $n\times n$ matrix $B$. You can then conclude that $A$ is invertible, and $A^{-1}=B$.

Examples

  • Consider $A=\def\mat#1{\begin{matrix}#1\end{matrix}}\left[\mat{1&3\\2&6}\right]$. \begin{align*}\m{A&I_2}&=\m{\mat{1&3\\2&6}&\mat{1&0\\0&1}} \def\go#1#2{\m{\mat{#1}&\mat{#2}}} \def\ar#1{\\[6pt]\xrightarrow{#1}&} \ar{R2\to R2-2R1}\go{1&3\\0&0}{1&0\\-2&1} \end{align*} Conclusion: $A$ is not invertible.
  • Consider $A=\left[\mat{1&3\\2&7}\right]$.\begin{align*}\m{A&I_2}&=\m{\mat{1&3\\2&7}&\mat{1&0\\0&1}} \ar{R2\to R2-2R1}\go{1&3\\0&1}{1&0\\-2&1} \ar{R1\to R1-3R1}\go{1&0\\0&1}{7&-3\\-2&1} \end{align*} Conclusion: $A$ is invertible and $A^{-1}=\left[\mat{7&-3\\-2&1}\right]$.
  • Consider $A=\left[\mat{3&1&0\\-2&-4&3\\5&4&-2}\right]$.\begin{align*}\m{A&I_3}&=\go{3&1&0\\-2&-4&3\\5&4&-2}{1&0&0\\0&1&0\\0&0&1} \ar{R1\to R1+R2} \go{1&-3&3\\-2&-4&3\\5&4&-2}{1&1&0\\0&1&0\\0&0&1} \ar{R2\to R2+2R1,\ R3\to R3-5R1} \go{1&-3&3\\0&-10&9\\0&19&-17}{1&1&0\\2&3&0\\-5&-5&1} \ar{R3\leftrightarrow R2} \go{1&-3&3\\0&19&-17\\0&-10&9}{1&1&0\\-5&-5&1\\2&3&0} \ar{R2\to R2+2R3} \go{1&-3&3\\0&-1&1\\0&-10&9}{1&1&0\\-1&1&1\\2&3&0} \ar{R1\to R1+3R2,\ R3\to R3-10R2} \go{1&0&0\\0&-1&1\\0&0&-1}{4&-2&3\\-1&1&1\\12&-7&-10} \ar{R2\to R2+R3} \go{1&0&0\\0&-1&0\\0&0&-1}{4&-2&3\\11&-6&-9\\12&-7&-10} \ar{R2\to -R2,\ R3\to -R3} \go{1&0&0\\0&1&0\\0&0&1}{4&-2&3\\-11&6&9\\-12&7&10} \end{align*} Conclusion: $A$ is invertible, and $A^{-1}=\left[\mat{4&-2&3\\-11&6&9\\-12&7&10}\right]$.

Chapter 3: Vectors and geometry

Recall that a $2\times 1$ column vector such as $\def\m#1{\begin{bmatrix}#1\end{bmatrix}}\m{4\\3}$ is a pair of numbers written in a column. We are also used to writing points in the plane $\mathbb R^2$ as a pair of numbersl; for example $(4,3)$ is the point obtained by starting from the origin, and moving $4$ units to the right and $3$ units up.

We think of a (column) vector like $\vec v=\m{4\\3}$ as an instruction to move $4$ units to the right and $3$ units up. This movement is called “translation by $\vec v$”.

Examples

The vector $\vec v=\m{4\\3}$ moves:

  • $(0,0)$ to $(4,3)$
  • $(-2,6)$ to $(2,9)$
  • $(x,y)$ to $(x+4,y+3)$.

It is convenient to not be too fussy about the difference between a point like $(4,3)$ and the vector $\m{4\\3}$. If we agree to write points as column vectors, then we can perform algebra (addition, subtraction, scalar multiplication) as discussed in Chapter 2, using points and column vectors.

For example, we could rewrite the examples above by saying that $\vec v=\m{4\\3}$ moves:

  • $\m{0\\0}$ to $\m{0\\0}+\m{4\\3}=\m{4\\3}$
  • $\m{-2\\6}$ to $\m{-2\\6}+\m{4\\3}=\m{2\\9}$
  • $\m{x\\y}$ to $\m{x\\y}+\m{4\\3}=\m{x+4\\y+3}$.

More generally: a column vector $\vec v$ moves a point $\vec x$ to $\vec x+\vec v$.

lecture_16.1490699821.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki