User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_13_slides

This is an old revision of the document!



Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/theme.php on line 50

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/action.php on line 14
→ Slide 1

The transpose of a matrix

The transpose of an $n\times m$ matrix $A$ is the $m\times n$ matrix $A^T$ whose $(i,j)$ entry is the $(j,i)$ entry of $A$. In other words, to get $A^T$ from $A$, you write the rows of $A$ as columns, and vice versa; equivalently, you reflect $A$ in its main diagonal.

For example, $\def\mat#1{\begin{bmatrix}#1\end{bmatrix}}\mat{a&b\\c&d}^T=\mat{a&c\\b&d}$ and $\mat{1&2&3\\4&5&6}^T=\mat{1&4\\2&5\\3&6}$.

↓ Slide 2

Simple properties of the transpose

  • $(A^T)^T=A$; and
  • $(A+B)^T=A^T+B^T$ if $A$ and $B$ are matrices of the same size; and
  • $(cA)^T=c(A^T)$ for any scalar $c$.
↓ Slide 3

Lemma: transposes and row-column multiplication

If $a$ is a $1\times m$ row vector and $b$ is an $m\times 1$ column vector, then \[ ab=b^Ta^T.\]

  • Proof is a calculation (see Tutorial worksheet 4)
↓ Slide 4

Observation: the transpose swaps rows with columns

Formally, for any matrix $A$ and any $i,j$, we have \begin{align*}\def\col#1{\text{col}_{#1}}\def\row#1{\text{row}_{#1}} \row i(A^T)&=\col i(A)^T\\\col j(A^T)&=\row j(A)^T .\end{align*}

↓ Slide 5

Theorem: the transpose reverses the order of matrix multiplication

If $A$, $B$ are matrices and the matrix product $AB$ is defined, then $B^TA^T$ is also defined, and $(AB)^T=B^TA^T$.

Proof

  • $A$ is $n\times m$ and $B$ is $m\times k$ for some $n,m,k$
    • $AB$ is an $n\times k$ matrix, so $(AB)^T$ is $k\times n$.
    • $B^T$ is $k\times m$ and $A^T$ is $m\times n$
    • So $B^TA^T$ is defined, and is $k\times n$.
  • So $(AB)^T$ and $B^TA^T$ have the same sizes.
  • To show that $(AB)^T=B^TA^T$, we have to check their entries all agree.
  • $(i,j)$ entry of $(AB)^T$
    • =$(j,i)$ entry of $AB$
    • = $\row j(A)\cdot\col i(B)$
    • = $\col i(B)^T\cdot \row j(A)^T$ since $ab=b^Ta^T$ for row-col multiplication
    • = $\row i(B^T)\cdot \col j(A^T)$ by the Observation about transposes
    • = the $(i,j)$ entry of $B^TA^T$.
  • Hence $(AB)^T$ and $B^TA^T$ have the same sizes and the same entries
  • So $(AB)^T=B^TA^T$. ■
→ Slide 6

$n\times n$ determinants

For an $n\times n$ matrix $A$, we'll define a number $\det(A)$ so that \[ A\text{ is invertible} \iff \det(A)\ne0.\]

  1. If $A=[a]$ is a $1\times 1$ matrix, then $\det[a]=a$.
  2. If $A=\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}\mat{a&b\\c&d}$ is a $2\times2$ matrix, then $\det(A)=ad-bc$.
  3. If $A=\mat{a&b&c\\d&e&f\\g&h&i}$ is a $3\times 3$ matrix, then it turns out that $\det(A)=aei-afh+bfg-bdi+cdh-ceg$.
  4. If $A$ is $4\times 4$, the formula for $\det(A)$ has $24$ terms.
  5. If $A$ is $5\times 5$, the formula for $\det(A)$ has $120$ terms.
  6. etc
  • To understand $n\times n$ determinants, we'll use several steps:
  1. Define the minors of a matrix
  2. Use minors to define the cofactors of a matrix
  3. Use cofactors to find the determinant of a $3\times 3$ matrix
  4. Use cofactors to find the determinant of an $n\times n$ matrix
  • After that: some other ways to calculate the determinant
↓ Slide 7

Step 1: minors

If $A$ is an $n\times n$ matrix, then the $(i,j)$ minor of $A$ is defined to be the determinant of the $(n-1)\times (n-1)$ matrix formed by removing row $i$ and column $j$ from $A$. We will write this number as $M_{ij}$.

  • Short version: to find $M_{ij}$: delete the row and col containing $(i,j)$ entry, then take determinant.
↓ Slide 8

Examples of minors

Short version: to find $M_{ij}$: delete the row and col containing $(i,j)$ entry, then take determinant.

  1. If $A=\mat{3&5\\-4&7}$, then
    • $M_{11}=\det[7]=7$
    • $M_{12}=\det[-4]=-4$
    • $M_{21}=5$
    • $M_{22}=3$.
  2. If $A=\mat{1&2&3\\7&8&9\\11&12&13}$, then
    • $M_{23}=\det\mat{1&2\\11&12}=1\cdot 12-2\cdot 11=-10$
    • $M_{32}=\det\mat{1&3\\7&9}=-12$.
↓ Slide 9

Step 2: cofactors

The $(i,j)$ cofactor of an $n\times n$ matrix $A$ is $(-1)^{i+j}M_{ij}$, where $M_{ij}$ is the (i,j) minor of $A$.

Note that $(-1)^{i+j}$ is $+1$ or $-1$, and can looked up in the matrix of signs: $\mat{+&-&+&-&\dots\\-&+&-&+&\dots\\+&-&+&-&\dots\\\vdots&\vdots&\vdots&\vdots&\ddots}$. This matrix starts with a $+$ in the $(1,1)$ entry (corresponding to $(-1)^{1+1}=(-1)^2=+1$) and the signs then alternate.

  • Short version: minors with some sign changes (according to matrix of signs).
↓ Slide 10

Examples of cofactors

Short version: minors with sign changes $\mat{+&-&+&-&\dots\\-&+&-&+&\dots\\+&-&+&-&\dots\\\vdots&\vdots&\vdots&\vdots&\ddots}$

  1. If $A=\mat{3&5\\-4&7}$, then
    • $C_{11}=+M_{11}=\det[7]=7$
    • $C_{12}=-M_{12}=-\det[-4]=4$
    • $C_{21}=-5$, and $C_{22}=3$.
  2. If $A=\mat{1&2&3\\7&8&9\\11&12&13}$, then
    • $C_{23}=-M_{23}=-(-10)=10$
    • $C_{33}=+M_{33}=\det\mat{1&2\\7&8}=-6$.
↓ Slide 11

Step 3: the determinant of a $3\times 3$ matrix

If $A=\mat{a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}}$ is a $3\times 3$ matrix, then \[\det A=a_{11}C_{11}+a_{12}C_{12}+a_{13}C_{13}.\] Here $C_{ij}$ are the cofactors of $A$.

  • This formula is called Laplace expansion of $\det A$ along the first row
  • Short version: sum along first row of (entries $\times$ cofactors)
↓ Slide 12

Example

Short version: sum along first row of (entries $\times$ cofactors)

  • $\det\mat{1&2&3\\7&8&9\\11&12&13}$
  • = $1\cdot C_{11} + 2 C_{12} + 3 C_{13}$
  • = $M_{11} - 2 M_{12} + 3 M_{13}$
  • = $\det\mat{8&9\\12&13} -2\det\mat{7&9\\11&13} + 3\det\mat{7&8\\11&12}$
  • = $-4 -2(-8)+3(-4)$
  • = $0$.

Since it has zero determinant, $\mat{1&2&3\\7&8&9\\11&12&13}$ is not invertible.

↓ Slide 13

Notation

  • Writing $\det$ all the time is annoying
  • Sometimes we write the entries of a matrix inside vertical bars $|\ |$ instead
  • e.g.\begin{align*}\def\vm#1{\begin{vmatrix}#1\end{vmatrix}}\vm{1&2&3\\7&8&9\\11&12&13} &= 1\vm{8&9\\12&13} -2\vm{7&9\\11&13} + 3\vm{7&8\\11&12}\\ &=-4 -2(-8)+3(-4)\\ &=0.\end{align*}
↓ Slide 14

Step 4: the determinant of an $n\times n$ matrix

Definition

If $\def\mat#1{\begin{bmatrix}#1\end{bmatrix}}A=\mat{a_{11}&a_{12}&\dots&a_{1n}\\\vdots&&&\vdots\\a_{n1}&a_{n2}&\dots&a_{nn}}$ is an $n\times n$ matrix, then \[\det A=a_{11}C_{11}+a_{12}C_{12}+\dots+a_{1n}C_{1n}.\] Here $C_{ij}$ are the cofactors of $A$.

This formula is called the Laplace expansion of $\det A$ along the first row, since $a_{11}, a_{12},\dots,a_{1n}$ make up the first row of $A$.

lecture_13_slides.1457350977.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki