This is an old revision of the document!
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/header.php on line 56
Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/action.php on line 14
Table of Contents
Proposition: solving $AX=B$ when $A$ is invertible
If $A$ is an invertible $n\times n$ matrix and $B$ is an $n\times k$ matrix, then the matrix equation \[ AX=B\] has a unique solution: $X=A^{-1}B$.
Proof
First we check that $X=A^{-1}B$ really is a solution to $AX=B$. To see this, note that if $X=A^{-1}B$, then \begin{align*} AX&=A(A^{-1}B)\\&=(AA^{-1})B\\&=I_n B \\&= B. \end{align*} Now we check that the solution is unique. If $X$ and $Y$ are both solutions, then $AX=B$ and $AY=B$, so \[AX=AY.\] Multiplying both sides on the left by $A^{-1}$, we get \[ A^{-1}AX=A^{-1}AY\implies I_nX=I_nY\implies X=Y.\] So any two solutions are equal, so $AX=B$ has a unique solution. ■
Corollary
If $A$ is an $n\times n$ matrix and there is a non-zero $n\times m$ matrix $K$ so that $AK=0_{n\times m}$, then $A$ is not invertible.
Proof
Since $A0_{n\times m}=0_{n\times m}$ and $AK=0_{n\times m}$, the equation $AX=0_{n\times m}$ has (at least) two solutions: $X=0_{n\times m}$ and $X=K$. Since $K$ is non-zero, these two solutions are different.
So there is not a unique solution to $AX=B$, for $B$ the zero matrix. If $A$ was invertible, this would contradict the uniqueness statement of the last Proposition. So $A$ cannot be invertible. ■
Example
We can now see why the matrix $\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}A=\mat{1&2\\-3&-6}$ is not invertible. If $X=\mat{-2\\1}$ and $Y=\mat{2\\-1}$, then $X\ne Y$ but $AX=0_{2\times 1}$ and $AY=0_{2\times 1}$, so $AX=AY$. So $A$ is not invertible, by the Corollary.
