Definition
If $a,b,c,d$ are any fixed numbers, then equation
\[ ax+by+cz=d\]
is a linear equation in 3 variables.
When you draw the set of all solutions of a linear equation in 3 variables, you always get a plane in 3-dimensional space, $\mathbb{R}^3$.
↓ Slide 1
Another look at the last example
$\begin{array}{ccccccrrr} x&+&3y&+&z&=&5&\quad&(1)\\ 2x&+&7y&+&4z&=&17&&(2)\end{array}$
Replace equation (2) with $(2)-2\times (1)$:
$\begin{array}{ccccccrrr} x&+&3y&+&z&=&5&\quad&(1)\\ &&y&+&2z&=&7&&(2)\end{array}$
Now replace equation (1) with $(1)-3\times (2)$
$\begin{array}{ccccccrrr} x&&&-&5z&=&-16&\quad&(1)\\ &&y&+&2z&=&7&&(2)\end{array}$
$\begin{array}{ccccccrrr} x&&&-&5z&=&-16&\quad&(1)\\ &&y&+&2z&=&7&&(2)\end{array}$
can easily rearrange (1) to find $x$ in terms of $z$
can easily rearrange (2) to find $y$ in terms of $z$
Since $z$ can take any value, write $z=t$ where $t$ is a “free parameter”
(which means $t$ can be any real number, or $t\in \mathbb{R}$).
Solution: \begin{align*} x&=-16+5t\\ y&=7-2t\\ z&=t,\qquad t\in \mathbb{R}\end{align*}
Solution: \begin{align*} x&=-16+5t\\ y&=7-2t\\ z&=t,\qquad t\in \mathbb{R}\end{align*}
Can also write this in “vector form”:
$\begin{bmatrix} x\\y\\z\end{bmatrix}=\begin{bmatrix} -16\\7\\0\end{bmatrix}+t\begin{bmatrix} 5\\-2\\1\end{bmatrix},\qquad t\in \mathbb{R}.$
This is the equation of the line where the two planes described by the original equations intersect.
$\begin{bmatrix} x\\y\\z\end{bmatrix}=\begin{bmatrix} -16\\7\\0\end{bmatrix}+t\begin{bmatrix} 5\\-2\\1\end{bmatrix},\qquad t\in \mathbb{R}$
For each value of $t$, we get a different solution (a different point on the line of intersection).
e.g. take $t=0$ to see that $(-16,7,0)$ is a solution
take $t=1.5$ to see that $(-16+1.5\times 5,7+1.5\times (-2),1.5) = (-8.5,4,1.5)$ is another solution
etc.
This works for any value $t\in\mathbb{R}$, and every solution may be written in this way.
↓ Slide 2
Observations
The operations we applied to the original linear system don't change the set of solutions. This is because each operation is reversible.
Writing out the variables $x,y,z$ each time is unnecessary:
erase the variables from the system $$\begin{array}{ccccccrrr} x&+&3y&+&z&=&5&\quad&(1)\\ 2x&+&7y&+&4z&=&17&&(2)\end{array}$$
write all the numbers in a grid, or a matrix
we get $\begin{bmatrix} 1&3&1&5\\2&7&4&17\end{bmatrix}$
System of linear equations: $\begin{array}{ccccccrrr} x&+&3y&+&z&=&5&\quad&(1)\\ 2x&+&7y&+&4z&=&17&&(2)\end{array}$
$\begin{bmatrix} 1&3&1&5\\2&7&4&17\end{bmatrix}$ is called the augmented matrix of this linear system
Each row corresponds to one equation.
Each column corresponds to one variable
Instead of performing operations on equations, we can perform operations on the rows of this matrix.
\begin{align*}
\begin{bmatrix} 1&3&1&5\\2&7&4&17\end{bmatrix}
&\xrightarrow{R2\to R2-2\times R1}
\begin{bmatrix} 1&3&1&5\\0&1&2&7\end{bmatrix}
\\[6pt]&\xrightarrow{R1\to R1-3\times R1}
\begin{bmatrix} 1&0&-5&-16\\0&1&2&7\end{bmatrix}
\end{align*}
Translate back into equations and solve:
$\begin{array}{ccccccrrr} x&&&-&5z&=&-16&\quad&(1)\\ &&y&+&2z&=&7&&(2)\end{array}$
$\begin{bmatrix} x\\y\\z\end{bmatrix}=\begin{bmatrix} -16\\7\\0\end{bmatrix}+t\begin{bmatrix} 5\\-2\\1\end{bmatrix},\qquad t\in \mathbb{R}.$
This method always works:
take any system of linear equations
write down a corresponding matrix (the augmented matrix)
perform reversible operations on the rows of this matrix to get a “nicer” matrix
write down a new system of linear equations with the same solutions as the original system.
Hopefully the new system will be easy to solve…
and the solutions haven't changed, so we'll have solved the original system!
→ Slide 3
The augmented matrix and elementary operations
↓ Slide 4
Definition
Given a system of linear equations:
\begin{align*} a_{11}x_1+a_{12}x_2+\dots+a_{1m}x_m&=b_1\\
a_{21}x_1+a_{22}x_2+\dots+a_{2m}x_m&=b_2\\
\hphantom{a_{11}}\vdots \hphantom{x_1+a_{22}}\vdots\hphantom{x_2+\dots+{}a_{nn}} \vdots\ & \hphantom{{}={}\!} \vdots\\
a_{n1}x_1+a_{n2}x_2+\dots+a_{nm}x_m&=b_n
\end{align*}
its augmented matrix is
\[ \begin{bmatrix}
a_{11}&a_{12}&\dots &a_{1m}&b_1\\
a_{21}&a_{22}&\dots &a_{2m}&b_2\\
\vdots&\vdots& &\vdots&\vdots\\
a_{n1}&a_{n2}&\dots &a_{nm}&b_n
\end{bmatrix}.\]
The numbers in this matrix are called its entries.
↓ Slide 5
Example
Find the augmented matrix of the linear system\begin{align*}3x+4y+7z&=2\\x+3z&=0\\y-2z&=5\end{align*}
We can rewrite it as \begin{align*}3x+4y+7z&=2\\{\color{red}1}x+{\color{red}0y}+3z&=0\\{\color{red}0x}+{\color{red}1}y-2z&=5\end{align*}
So the augmented matrix is\[ \begin{bmatrix} 3&4&7&2\\1&0&3&0\\0&1&-2&5\end{bmatrix}.\]
↓ Slide 6
Elementary operations on a system of linear equations
If we perform one of the following operations on a system of linear equations:
list the equations in a different order; or
multiply one of the equations by a non-zero real number; or
replace equation $j$ by “equation $j$ ${}+{}$ $c\times {}$ (equation $i$)”, where $c$ is a non-zero real number and $i\ne j$,
then the new system will have exactly the same solutions as the original system. These are called elementary operations on the linear system.
↓ Slide 7
Why do elementary operations leave the solutions of systems unchanged?
↓ Slide 8
Elementary row operations on a matrix
Translate elementary operations on the linear system into operations on the rows of the augmented matrix:
change the order of the rows of the matrix;
multiply one of the rows of the matrix by a non-zero real number;
replace row $j$ by “row $j$ ${}+{}$ $c\times {}$ (row $i$)”, where $c$ is a non-zero real number and $i\ne j$.
↓ Slide 9
Example
Use EROs to find the intersection of the planes
\begin{align*} 3x+4y+7z&=2\\x+3z&=0\\y-2z&=5\end{align*}
↓ Slide 10
Solution 1
\begin{align*}
\def\go#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]}
\def\ar#1{\\\xrightarrow{#1}&}
&\go{3&4&7&2}{1&0&3&0}{0&1&-2&5}
\ar{\text{reorder rows}}\go{1&0&3&0}{0&1&-2&5}{3&4&7&2}
\ar{R3\to R3-3R1}\go{1&0&3&0}{0&1&-2&5}{0&4&-2&2}
\ar{R3\to R3-4R2}\go{1&0&3&0}{0&1&-2&5}{0&0&6&-18}
\ar{R3\to \tfrac16 R3}\go{1&0&3&0}{0&1&-2&5}{0&0&1&-3}
\end{align*}
$\go{1&0&3&0}{0&1&-2&5}{0&0&1&-3}$
from the last row, we get $z=-3$
from the second row, we get $y-2z=5$
from the first row, we get $x+3z=0$
Conclusion: $\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}9\\-1\\-3\end{bmatrix}$ is the only solution.
↓ Slide 11
Solution 2
We start in the same way, but by performing more EROs we make the algebra at the end simpler.
\begin{align*}
\def\go#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]}
\def\ar#1{\\\xrightarrow{#1}&}
&\go{3&4&7&2}{1&0&3&0}{0&1&-2&5}
\ar{\ldots \text{same EROs as above}\ldots}\go{1&0&3&0}{0&1&-2&5}{0&0&1&-3}
\ar{R2\to R2+2R3}\go{1&0&3&0}{0&1&0&-1}{0&0&1&-3}
\ar{R1\to R1-3R3}\go{1&0&0&9}{0&1&0&-1}{0&0&1&-3}
\end{align*}
\[ \go{1&0&0&9}{0&1&0&-1}{0&0&1&-3}\]
from the last row, we get $z=-3$
from the second row, we get $y=-1$
from the first row, we get $x=9$
So $\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}9\\-1\\-3\end{bmatrix}$ is the only solution.
↓ Slide 12