If $\newcommand{\mat}[1]{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]} A=\mat{1&0&5\\2&-1&3}$ and $B=\mat{1&2\\3&4\\5&6}$,
If $A=\mat{1&2\\3&4\\5&6}$, $B=\mat{2&1&1\\1&2&0\\1&0&2\\2&2&1}$ and $C=\mat{1&3&0&7\\0&4&6&8}$,
If $A=\mat{0&1\\0&0}$ and $B=\mat{0&0\\1&0}$, then
If $A=0_{n\times n}$ is the $n\times n$ zero matrix and $B$ is any $n\times n$ matrix, then
If $A=\mat{1&2\\3&4}$ and $B=\mat{7&10\\15&22}$, then
If $A=\mat{1&2\\3&4}$ and $B=\mat{6&10\\15&22}$, then
We say that matrices $A$ and $B$ commute if $AB=BA$.
The $n\times n$ identity matrix is the $n\times n$ matrix $I_n$ with $1$s in every diagonal entry (that is, in the $(i,i)$ entry for every $i$ between $1$ and $n$), and $0$s in every other entry. So \[ I_n=\begin{bmatrix} 1&0&0&\dots&0\\0&1&0&\dots&0\\0&0&1&\dots&0\\\vdots & & &\ddots & \vdots\\0&0&0&\dots&1\end{bmatrix}.\]