↓ Slide 1

Row-column & matrix multiplication

↓ Slide 2

Matrix multiplication: the definition

↓ Slide 3

"Compatible" sizes for $AB$ to be defined

↓ Slide 4

Example 1

If $\newcommand{\mat}[1]{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]} A=\mat{1&0&5\\2&-1&3}$ and $B=\mat{1&2\\3&4\\5&6}$,

↓ Slide 5

Example 2

If $A=\mat{1&2\\3&4\\5&6}$, $B=\mat{2&1&1\\1&2&0\\1&0&2\\2&2&1}$ and $C=\mat{1&3&0&7\\0&4&6&8}$,

↓ Slide 6

Example 3

If $A=\mat{0&1\\0&0}$ and $B=\mat{0&0\\1&0}$, then

↓ Slide 7

Example 4

If $A=0_{n\times n}$ is the $n\times n$ zero matrix and $B$ is any $n\times n$ matrix, then

↓ Slide 8

Example 5

If $A=\mat{1&2\\3&4}$ and $B=\mat{7&10\\15&22}$, then

↓ Slide 9

Example 6

If $A=\mat{1&2\\3&4}$ and $B=\mat{6&10\\15&22}$, then

↓ Slide 10

Commuting matrices I

We say that matrices $A$ and $B$ commute if $AB=BA$.

↓ Slide 11

Commuting matrices II

↓ Slide 12

Commuting matrices III

↓ Slide 13

The $n\times n$ identity matrix

The $n\times n$ identity matrix is the $n\times n$ matrix $I_n$ with $1$s in every diagonal entry (that is, in the $(i,i)$ entry for every $i$ between $1$ and $n$), and $0$s in every other entry. So \[ I_n=\begin{bmatrix} 1&0&0&\dots&0\\0&1&0&\dots&0\\0&0&1&\dots&0\\\vdots & & &\ddots & \vdots\\0&0&0&\dots&1\end{bmatrix}.\]

↓ Slide 14

Examples

  1. $I_1=[1]$
  2. $I_2=\mat{1&0\\0&1}$
  3. $I_3=\mat{1&0&0\\0&1&0\\0&0&1}$
  4. $I_4=\mat{1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1}$, and so on!
↓ Slide 15

Properties of $I_n$

  1. $I_nA=A$ for any $n\times m$ matrix $A$;
  2. $AI_m=A$ for any $n\times m$ matrix $A$; and
  3. $I_nB=B=BI_n$ for any $n\times n$ matrix $B$.
    • In particular, $I_n$ commutes with every other square $n\times n$ matrix $B$.
↓ Slide 16

Proof that $I_nA=A$ for $A$: $n\times m$

↓ Slide 17

More proofs