→ Slide 1

Solving linear systems. Examples; how many solutions?

↓ Slide 2

More examples

↓ Slide 3

Example 1

If $ f(x)=ax^2+bx+c$ and $f(1)=3$, $f(2)=2$ and $f(3)=4$, find $f(x)$.

\begin{align*}\def\go#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]} \def\ar#1{\\\xrightarrow{#1}&} \go{1&1&1&3}{4&2&1&2}{9&3&1&4} \xrightarrow{R2\to R2-4R1\text{ and }R3\to R3-9R1}& \go{1&1&1&3}{0&-2&-3&-10}{0&-6&-8&-23} \ar{R2\to -\tfrac12 R2} \go{1&1&1&3}{0&1&\tfrac32&5}{0&-6&-8&-23} \ar{R3\to R3+6R2} \go{1&1&1&3}{0&1&\tfrac32&5}{0&0&1&7} \end{align*}

\begin{align*} \go{1&1&1&3}{0&1&\tfrac32&5}{0&0&1&7} \xrightarrow{R1\to R1-R3\text{ and }R2\to R2-\tfrac32R3}& \go{1&1&0&-4}{0&1&0&-5.5}{0&0&1&7} \ar{R1\to R1-R2} \go{1&0&0&1.5}{0&1&0&-5.5}{0&0&1&7} \end{align*}

↓ Slide 4

Example 2

Solve the linear system \begin{align*}3x+4y-2z&=1\\x+y+z&=4\\2x+5y+z&=3\end{align*} by transforming the augmented matrix into reduced row echelon form.

\begin{align*} \def\go#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]} \def\ar#1{\\\xrightarrow{#1}&} \go{3&4&-2&1}{1&1&1&4}{2&5&1&3} \xrightarrow{R1\leftrightarrow R2}& \go{1&1&1&4}{3&4&-2&1}{2&5&1&3} \ar{R2\to R2-3R1\text{ and }R3\to R3-2R1} \go{1&1&1&4}{0&1&-5&-11}{0&3&-1&-5} \ar{R3\to R3-3R1} \go{1&1&1&4}{0&1&-5&-11}{0&0&14&28} \ar{R3\to \tfrac1{14}R3} \go{1&1&1&4}{0&1&-5&-11}{0&0&1&2} \end{align*}

\begin{align*} \go{1&1&1&4}{0&1&-5&-11}{0&0&1&2} \xrightarrow{R1\to R1-R3\text{ and }R2\to R2+5R3}& \go{1&1&0&2}{0&1&0&-1}{0&0&1&2} \ar{R1\to R1-R2} \go{1&0&0&3}{0&1&0&-1}{0&0&1&2} \end{align*}

↓ Slide 5

Example 3

Solve the linear system \begin{align*}3x+y-2z+4w&=5\\x+z+w&=2\\4x+2y-6z+6w&=0\end{align*}

\begin{align*} \go{3&1&-2&4&5}{1&0&1&1&2}{4&2&-6&6&0} \xrightarrow{R1\leftrightarrow R2}& \go{1&0&1&1&2}{3&1&-2&4&5}{4&2&-6&6&0} \ar{R2\to R2-3R1\text{ and }R3\to R3-4R1} \go{1&0&1&1&2}{0&1&-5&1&-1}{0&2&-10&2&-8} \ar{R3\to R3-2R2} \go{1&0&1&1&2}{0&1&-5&1&-1}{0&0&0&0&-6} \ar{R3\to -\tfrac16 R3} \go{1&0&1&1&2}{0&1&-5&1&-1}{0&0&0&0&1} \end{align*}

\[ \go{1&0&1&1&2}{0&1&-5&1&-1}{0&0&0&0&1}\]

↓ Slide 6

Example 4

For which value(s) of $k$ does the following linear system have infinitely many solutions?

\begin{gather*}x+y+z=1\\x-z=5\\2x+3y+kz=-2\end{gather*}

\begin{align*} \go{1&1&1&1}{1&0&-1&5}{2&3&k&-2} \xrightarrow{R2\to R2-R1\text{ and }R3\to R3-2R1}& \go{1&1&1&1}{0&-1&-2&4}{0&1&k-2&-4} \ar{R2\to -R2} \go{1&1&1&1}{0&1&2&-4}{0&1&k-2&-4} \ar{R3\to R3-R2} \go{1&1&1&1}{0&1&2&-4}{0&0&k-4&0} \end{align*}

\[\go{1&1&1&1}{0&1&2&-4}{0&0&k-4&0}\]

↓ Slide 7

Observations

For a system of linear equations with<html><br /></html> #vars variables, #eqs equations:

→ Slide 8

Chapter 2: The algebra of matrices

An $n\times m$ matrix is a grid of numbers with $n$ rows and $m$ columns: \[ A=\begin{bmatrix}a_{11}&a_{12}&\dots&a_{1m}\\a_{21}&a_{22}&\dots&a_{2m}\\\vdots&\vdots&&\vdots\\a_{n1}&a_{n2}&\dots&a_{nm}\end{bmatrix}\]

↓ Slide 9

Examples

↓ Slide 10

Size of a matrix

Two matrices $A$ and $B$ have the same size if they have the same number of rows, and they have the same number of columns.

If two matrices do not have the same size, we say they have different sizes.

↓ Slide 11

Equality of matrices

Two matrices $A$ and $B$ are said to be equal if both of the following conditions hold:

  • $A$ and $B$ have the same size; and
  • every entry of $A$ is equal to the corresponding entry of $B$; in other words, for every $(i,j)$ so that $A$ and $B$ have an $(i,j)$ entry, we have $a_{ij}=b_{ij}$.

When $A$ and $B$ are equal matrices, we write $A=B$. Otherwise, we write $A\ne B$.

↓ Slide 12

Examples