→ Slide 1

The story so far...

→ Slide 2

Today

  1. How to solve a system in REF or RREF
  2. How to find REF or RREF for a system
→ Slide 3

Solving a system in REF or RREF

Given an augmented matrix in REF (or RREF), each column except the last column corresponds to a variable. These come in two types:

To solve the corresponding linear system:

  1. assign a free parameter ($r,s,t,\dots$) to each free variable
  2. starting at the bottom, write out each equation and rearrange for its leading variable
↓ Slide 4

Example

Solve the linear system for $\newcommand{\sm}{\left[\begin{smallmatrix}}\newcommand{\esm}{\end{smallmatrix}\right]} \sm 1&2&3&0&0&8\\0&0&1&1&1&5\\0&0&0&1&3&4\esm$.

→ Slide 5

Gaussian elimination

A systematic way to put an augmented matrix into REF or RREF using EROs

→ Slide 6

Gaussian elimination 1

To put a matrix in REF using EROs:

  1. Re-order rows so that the leftmost leading entry is in the top row.
  2. Divide top row by its leading entry, making this a $1$.
  3. “Pivot about the leading 1”: subtract multiples of the top row from rows below to make entries below leading $1$ zero.
  4. Go back to the start, ignoring the top row (until no rows remain, except possibly zero rows).
→ Slide 7

Gaussian elimination 2

To put a matrix into RREF using EROs: first put it into REF as above. Then:

  1. Look at the non-zero row nearest the bottom of the matrix
  2. Pivot about the leading $1$ in that row and use it to make zeros above
  3. Move to the next row up, and go to step 2 (until no rows remain).
↓ Slide 8

Example

Use Gaussian elimination to solve the linear system \begin{align*} 2x+y+3z+4w&=27\\ x+2y+3z+2w&=30\\x+y+3z+w&=25\end{align*}

We put the augmented matrix into REF: \begin{align*} \def\go#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]} \def\ar#1{\\\xrightarrow{#1}&} \go{2&1&3&4&27}{1&2&3&2&30}{1&1&3&1&25} \xrightarrow{\text{reorder rows (to avoid division)}}& \go{1&1&3&1&25}{1&2&3&2&30}{2&1&3&4&27} \ar{R2\to R2-R1\text{ and }R3\to R3-2R2} \go{1&1&3&1&25}{0&1&0&1&5}{0&-1&-3&2&-23} \ar{R3\to R3+R2} \go{1&1&3&1&25}{0&1&0&1&5}{0&0&-3&3&18} \ar{R3\to-\tfrac13R3} \go{1&1&3&1&25}{0&1&0&1&5}{0&0&1&-1&6} \end{align*}

$\go{1&1&3&1&25}{0&1&0&1&5}{0&0&1&-1&6}$

Solution using RREF instead: \begin{align*} \def\go#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]} \def\ar#1{\\\xrightarrow{#1}&} \go{2&1&3&4&27}{1&2&3&2&30}{1&1&3&1&25} \xrightarrow{\text{do everything as above}}& \go{1&1&3&1&25}{0&1&0&1&5}{0&0&1&-1&6} \ar{R1\to R1-3R3} \go{1&1&0&4&7}{0&1&0&1&5}{0&0&1&-1&6} \ar{R1\to R1-R2} \go{1&0&0&3&2}{0&1&0&1&5}{0&0&1&-1&6} \end{align*}

$\go{1&0&0&3&2}{0&1&0&1&5}{0&0&1&-1&6}$ is in RREF.

↓ Slide 9

Example

If $ f(x)=ax^2+bx+c$ and $f(1)=3$, $f(2)=2$ and $f(3)=4$, find $f(x)$.

\begin{align*} \go{1&1&1&3}{4&2&1&2}{9&3&1&4} \xrightarrow{R2\to R2-4R1\text{ and }R3\to R3-9R1}& \go{1&1&1&3}{0&-2&-3&-10}{0&-6&-8&-23} \ar{R2\to -\tfrac12 R2} \go{1&1&1&3}{0&1&\tfrac32&5}{0&-6&-8&-23} \ar{R3\to R3+6R2} \go{1&1&1&3}{0&1&\tfrac32&5}{0&0&1&7} \end{align*}

\begin{align*} \go{1&1&1&3}{0&1&\tfrac32&5}{0&0&1&7} \xrightarrow{R1\to R1-R3\text{ and }R2\to R2-\tfrac32R3}& \go{1&1&0&-4}{0&1&0&-5.5}{0&0&1&7} \ar{R1\to R1-R2} \go{1&0&0&1.5}{0&1&0&-5.5}{0&0&1&7} \end{align*}