Given an augmented matrix in REF (or RREF), each column except the last column corresponds to a variable. These come in two types:
For the augmented matrix $$ \begin{bmatrix} 1&2&3&0&0&8\\0&0&1&1&1&5\\0&0&0&1&3&4\end{bmatrix}$$ which is in REF, if we use the variables $x_1,x_2,x_3,x_4,x_5$ then
To solve such a linear system, we use the following procedure:
In the example above, this gives:
So \begin{align*} x_1&=5-2s-6t\\x_2&=s\\x_3&=1+2t\\x_4&=4-3t\\x_5&=t\end{align*} where $s$ and $t$ are free parameters, i.e. $s,t\in \mathbb{R}$.
Writing this solution in vector form gives: $$ \begin{bmatrix} x_1\\x_2\\x_3\\x_4\\x_5\end{bmatrix} = \begin{bmatrix} 5\\0\\1\\4\\0\end{bmatrix}+s\begin{bmatrix} -2\\1\\0\\0\\0\end{bmatrix} +t\begin{bmatrix} -6\\0\\2\\-3\\1\end{bmatrix},\quad s,t\in \mathbb{R}.$$
Note that the solution set is a subset of $\mathbb{R}^5$, which is $5$-dimensional space; and the solution set is $2$-dimensional, because there are $2$ free parameters.
We've seen that putting a matrix into REF (or even better, in RREF) makes it easier to solve equations.
Aim: put any matrix into REF using EROs.
If we want, we can go further and put the matrix into RREF. First put it into REF as above, and then:
Use Gaussian elimination to solve the linear system \begin{align*} 2x+y+3z+4w&=27\\ x+2y+3z+2w&=30\\x+y+3z+w&=25\end{align*}
We put the augmented matrix into REF: \begin{align*} \def\go#1#2#3{\begin{bmatrix}#1\\#2\\#3\end{bmatrix}} \def\ar#1{\\[6pt]\xrightarrow{#1}&} &\go{2&1&3&4&27}{1&2&3&2&30}{1&1&3&1&25} \ar{\text{reorder rows (to avoid division)}} \go{1&1&3&1&25}{1&2&3&2&30}{2&1&3&4&27} \ar{R2\to R2-R1\text{ and }R3\to R3-2R2} \go{1&1&3&1&25}{0&1&0&1&5}{0&-1&-3&2&-23} \ar{R3\to R3+R2} \go{1&1&3&1&25}{0&1&0&1&5}{0&0&-3&3&-18} \ar{R3\to-\tfrac13R3} \go{1&1&3&1&25}{0&1&0&1&5}{0&0&1&-1&6} \end{align*} This is in REF. There are leading entries in the columns for $x,y,z$ but not for $w$, so $w=t$ is a free variable (where $t\in\mathbb{R}$). Now $$ z-w=6\implies z=6+w=6+t$$ $$ y+w=5\implies y=5-w=5-t$$ $$ x+y+3z+w=25\implies x=25-y-3z-w=25-(5-t)-3(6+t)-t=2-3t.$$ So $$ \begin{bmatrix}x\\y\\z\\w\end{bmatrix}=\begin{bmatrix} 2\\5\\6\\0\end{bmatrix}+t\begin{bmatrix}-3\\-1\\1\\1\end{bmatrix},\quad t\in\mathbb{R}.$$
We put the augmented matrix into RREF. \begin{align*} \def\go#1#2#3{\begin{bmatrix}#1\\#2\\#3\end{bmatrix}} \def\ar#1{\\[6pt]\xrightarrow{#1}&} &\go{2&1&3&4&27}{1&2&3&2&30}{1&1&3&1&25} \ar{\text{do everything as above}} \go{1&1&3&1&25}{0&1&0&1&5}{0&0&1&-1&6} \ar{R1\to R1-3R3} \go{1&1&0&4&7}{0&1&0&1&5}{0&0&1&-1&6} \ar{R1\to R1-R2} \go{1&0&0&3&2}{0&1&0&1&5}{0&0&1&-1&6} \end{align*} This is in RREF. There are leading entries in the columns for $x,y,z$ but not for $w$, so $w=t$ is a free variable (where $t\in\mathbb{R}$). Now $$ z-w=6\implies z=6+w=6+t$$ $$ y+w=5\implies y=5-w=5-t$$ $$ x+3w=2\implies x=2-3w=2-3t$$ So $$ \begin{bmatrix}x\\y\\z\\w\end{bmatrix}=\begin{bmatrix} 2\\5\\6\\0\end{bmatrix}+t\begin{bmatrix}-3\\-1\\1\\1\end{bmatrix},\quad t\in\mathbb{R}.$$