↓ Slide 1

Last time

→ Slide 2

The distance from a point to a line

How can we find $d=\text{dist}(B,L)$, the distance from the point $B$ to a line $L$ in $\mathbb R^3$?

↓ Slide 3

Example using $\def\vv{\vec v}\def\dist{\text{dist}}\dist(B,L)=\frac{\|\vec{AB}\times\vv\|}{\|\vv\|}$

Find the distance from the point $B=(1,2,3)$ to the line \[L:\c xyz=\c10{-1}+t\c41{-5},\quad t\in\mathbb{R}.\]

↓ Slide 4

Alternative formula

↓ Slide 5

Example using $\text{dist}(B,L)=\|\vec{AB}-\vec p\|$

Find the $\dist(B,L)$ for $B=(1,2,3)$ and $L:\c xyz=\c10{-1}+t\c41{-5},\quad t\in\mathbb{R}$.

→ Slide 6

Skew lines in $\mathbb{R}^3$

↓ Slide 7

Example

What is the distance between the skew lines $L_1:x=1+t_1,\ y=2t_1,\ z=1+3t_1$ and $L_2:\c xyz=\c 321+t_2\c1{-1}1$?

↓ Slide 8

Distance between lines in $\mathbb{R}^3$ in general

↓ Slide 9

End of the course