↓ Slide 1

Last time

→ Slide 2

The dot product

↓ Slide 3

Definition of the dot product

Let $\def\m#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}\vec v=\m{v_1\\v_2\\\vdots\\v_n}$ and $\vec w=\m{w_1\\w_2\\\vdots\\w_n}$ be two vectors in $\mathbb{R}^n$.

The dot product of $\vec v$ and $\vec w$ is the number $\vec v\cdot \vec w$ given by \[ \color{red}{\vec v\cdot\vec w=v_1w_1+v_2w_2+\dots+v_nw_n}.\]

↓ Slide 4

Example

Let $\vec v=\m{3\\5}$ and $\vec w=\m{4\\-7}$.

→ Slide 5

Properties of the dot product

For any vectors $\vec v$, $\vec w$ and $\vec u$ in $\mathbb{R}^n$, and any scalar $c\in \mathbb{R}$:

  1. $\def\dp#1#2{\vec #1\cdot \vec #2}\dp vw=\dp wv$ (the dot product is commutative)
  2. $\vec u\cdot(\vec v+\vec w)=\dp uv+\dp uw$
  3. $(c\vec v)\cdot \vec w=c(\dp vw)$
  4. $\dp vv=\|\vec v\|^2\ge 0$, and $\dp vv=0 \iff \vec v=0_{n\times 1}$

The proofs of these properties are exercises.

→ Slide 6

Angles and the dot product

↓ Slide 7

Theorem: geometric dot product formula

If $\vec v$ and $\vec w$ are non-zero vectors in $\mathbb{R}^n$, then \[ \dp vw=\|\vec v\|\,\|\vec w\|\,\cos\theta\] where $\theta$ is the angle between $\vec v$ and $\vec w$.

↓ Slide 8

Example

What's the angle $\theta$ between $\vec v=\m{1\\2}$ and $\vec w=\m{-2\\1}$?

↓ Slide 9

Picture of $\vec v=\m{1\\2}$ and $\vec w=\m{-2\\1}$

We can draw a convincing picture which indicates that these vectors are indeed at right angles:

↓ Slide 10

Reminder: the cosine rule

↓ Slide 11

Proof of the geometric dot product formula

Aim: $\def\vv{\vec v}\def\ww{\vec w}\vv\cdot\ww=\|\vv\|\,\|\ww\|\cos\theta$.

↓ Slide 12

Proof of the geometric dot product formula, continued

Aim: $\def\vv{\vec v} \def\ww{\vec w}\vv\cdot\ww=\|\vv\|\,\|\ww\|\cos\theta$.

↓ Slide 13

Corollary 1: angle formula

If $\vv$ and $\ww$ are non-zero vectors and $\theta$ is the angle between them, then $\cos\theta=\displaystyle\frac{\vv\cdot\ww}{\|\vv\|\,\|\ww\|}$.

↓ Slide 14

Example 1

What is the angle $\theta$ between $\def\c#1#2{\left[\begin{smallmatrix}{#1}\\{#2}\end{smallmatrix}\right]}\c12$ and $\c3{-4}$?

↓ Slide 15

Corollary 2: orthogonal vectors

If $\vv$ and $\ww$ are non-zero vectors with $\vv\cdot\ww=0$, then $\vv$ and $\ww$ are orthogonal: they are at right-angles.

↓ Slide 16

Example 2

Prove that $A=(2,3)$, $B=(3,6)$ and $C=(-4,5)$ are the vertices of a right-angled triangle.

↓ Slide 17

Example 3

Find a unit vector orthogonal to the vector $\vv=\c12$.