Let $\def\m#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}\vec v=\m{v_1\\v_2\\\vdots\\v_n}$ and $\vec w=\m{w_1\\w_2\\\vdots\\w_n}$ be two vectors in $\mathbb{R}^n$.
The dot product of $\vec v$ and $\vec w$ is the number $\vec v\cdot \vec w$ given by \[ \color{red}{\vec v\cdot\vec w=v_1w_1+v_2w_2+\dots+v_nw_n}.\]
Note that while $\vec v$ and $\vec w$ are vectors, their dot product $\vec v\cdot \vec w$ is a scalar.
If $\vec v=\m{3\\5}$ and $\vec w=\m{4\\-7}$, then $\vec v\cdot \vec w=\m{3\\5}\cdot \m{4\\-7} = 3(4)+5(-7)=-23$.
For any vectors $\vec v$, $\vec w$ and $\vec u$ in $\mathbb{R}^n$, and any scalar $c\in \mathbb{R}$:
The proofs of these properties are exercises.
If $\vec v$ and $\vec w$ are non-zero vectors in $\mathbb{R}^n$, then \[ \dp vw=\|\vec v\|\,\|\vec w\|\,\cos\theta\] where $\theta$ is the angle between $\vec v$ and $\vec w$.
The proof will be given soon, but for now here is an example.
If $\vec v=\m{1\\2}$ and $\vec w=\m{-2\\1}$, then $\dp vw=1(-2)+2(1)=-2+2=0$. On the other hand, we have $\|\vec v\|=\sqrt5=\|\vec w\|$, so the angle $\theta$ between $\vec v$ and $\vec w$ satisfies \[ 0=\dp vw=\sqrt 5\times \sqrt 5 \times \cos\theta\] so $5\cos\theta=0$, so $\cos\theta=0$, so $\theta=\pi/2$ or $\theta=3\pi/2$ (measuring angles in radians). This tells us that the angle between $\vec v$ and $\vec w$ is a right angle. We say that these vectors are orthogonal. We can draw a convincing picture which indicates that these vectors are indeed at right angles:
We wish to show that $\def\vv{\vec v} \def\ww{\vec w}\vv\cdot\ww=\|\vv\|\,\|\ww\|\cos\theta$ where $\theta$ is the angle between $\vv$ and $\ww$.
Recall the cosine rule:
Consider a triangle with two sides $\vv$ and $\ww$. By the triangle rule for vector addition, the third side $\vec x$ has $\ww+\vec x=\vv$, so $\vec x=\vv-\ww$:
Applying the cosine rule gives \[ \|\vv-\ww\|^2=\|\vv\|^2+\|\ww\|^2-2\|\vv\|\,\|\ww\|\,\cos\theta.\] On the other hand, we know that $\|\vec x\|^2=\vec x\cdot\vec x$, so \begin{align*}\|\vv-\ww\|^2&=(\vv-\ww)\cdot(\vv-\ww)\\&=\vv\cdot\vv+\ww\cdot\ww-\ww\cdot\vv-\vv\cdot\ww\\&=\|\vv\|^2+\|\ww\|^2-2\vv\cdot\ww.\end{align*} So \[\|\vv\|^2+\|\ww\|^2-2\|\vv\|\,\|\ww\|\,\cos\theta=\|\vv\|^2+\|\ww\|^2-2\vv\cdot\ww\cos\theta.\] Subtracting $\|\vv\|^2+\|\ww\|^2$ from both sides and dividing by $-2$ gives $\vv\cdot\ww=\|\vv\|\,\|\ww\|\cos\theta$. ■
If $\vv$ and $\ww$ are non-zero vectors and $\theta$ is the angle between them, then $\cos\theta=\displaystyle\frac{\vv\cdot\ww}{\|\vv\|\,\|\ww\|}$.
If $\vv$ and $\ww$ are non-zero vectors with $\vv\cdot\ww=0$, then $\vv$ and $\ww$ are orthogonal: they are at right-angles.