If $A=\def\mat#1{\begin{bmatrix}#1\end{bmatrix}}\def\vm#1{\begin{vmatrix}#1\end{vmatrix}}\mat{a&b\\c&d}$, then $C=\mat{d&-c\\-b&a}$, so the adjoint of $A$ is $J=C^T=\mat{d&-b\\-c&a}$.
Recall that $AJ=(\det A)I_2=JA$; we calculated this earlier when we looked at the inverse of a $2\times 2$ matrix. Hence for a $2\times 2$ matrix $A$, if $\det A\ne0$, then $A^{-1}=\frac1{\det A}J$.
If $\def\mat#1{\begin{bmatrix}#1\end{bmatrix}}A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$, then the matrix of signs is $\mat{+&-&+\\-&+&-\\+&-&+}$, so \[\def\vm#1{\begin{vmatrix}#1\end{vmatrix}} C=\mat{ \vm{-4&3\\4&-2}&-\vm{-2&3\\5&-2}&\vm{-2&-4\\5&4}\\ -\vm{1&0\\4&-2}&\vm{3&0\\5&-2}&-\vm{3&1\\5&4}\\ \vm{1&0\\-4&3}&-\vm{3&0\\-2&3}&\vm{3&1\\-2&-4}} = \mat{-4&11&12\\2&-6&-7\\3&-9&-10}\] so the adjoint of $A$ is \[ J=C^T=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}.\]
Observe that $AJ=\mat{3&1&0\\-2&-4&3\\5&4&-2}\mat{-4&2&3\\11&-6&-9\\12&-7&-10}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$, and $JA=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}\mat{3&1&0\\-2&-4&3\\5&4&-2}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$; and $\det(A)=-1$.
This is an illustration of the following theorem, whose proof is omitted:
If $A$ is any $n\times n$ matrix and $J$ is its adjoint, then $AJ=(\det A)I_n=JA$.
If $A$ is any $n\times n$ matrix with $\det(A)\ne 0$, then $A$ is invertible and \[A^{-1}=\frac1{\det A}J\] where $J$ is the adjoint of $A$.
Divide the equation $AJ=(\det A)I_n=JA$ by $\det A$. ■
If again we take $A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$, then $J=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}$ and $\det(A)=-1$, so $A$ is invertible and $A^{-1}=\frac1{-1}J=-J=\mat{4&-2&-3\\-11&6&9\\-12&7&10}$.
Let $A=\mat{1&0&0&0\\1&2&0&0\\1&2&3&0\\1&2&3&4}$.
Recall that a matrix with a repeated row or a zero row has determinant zero. We have \[C=\mat{+\vm{2&0&0\\2&3&0\\2&3&4}&-\vm{1&0&0\\1&3&0\\1&3&4}&+0&-0\\-0&+\vm{1&0&0\\1&3&0\\1&3&4}&-\vm{1&0&0\\1&2&0\\1&2&4}&+0\\+0&-0&+\vm{1&0&0\\1&2&0\\1&2&4}&-\vm{1&0&0\\1&2&0\\1&2&3}\\-0&+0&-0&+\vm{1&0&0\\1&2&0\\1&2&3}}=\mat{24&-12&0&0\\0&12&-8&0\\0&0&8&-6\\0&0&0&6}\] so \[J=C^T=\mat{24&0&0&0\\-12&12&0&0\\0&-8&8&0\\0&0&-6&6}.\] Since $A$ is lower triangular, its determinant is given by multiplying together its diagonal entries: $\det(A)=1\times 2\times 3\times 4=24$. (Note that even if $A$ was not triangular, $\det A$ can be easily found from the matrix of cofactors $C$ by summing the entries of $A$ multiplied by the entries of $C$ (i.e., the minors) along any row or column.)
So \[A^{-1}=\frac1{\det A}J = \frac1{24}\mat{24&0&0&0\\-12&12&0&0\\0&-8&8&0\\0&0&-6&6}=\mat{1&0&0&0\\-1/2&1/2&0&0\\0&-1/3&1/3&0\\0&0&-1/4&1/4}.\] You should check that this really is the inverse, by checking that $AA^{-1}=I_4=A^{-1}A$.
Given an $n\times n$ matrix $A$, form the $n\times 2n$ matrix \[ \def\m#1{\left[ \begin{array}{@{} c|c {}@} % it does autodetection #1 \end{array} \right]}\m{A&I_n}\] and use EROs to put this matrix into RREF. One of two things can happen: