↓ Slide 1

Last time

↓ Slide 2

Today

↓ Slide 3

Theorem: row/column operations and determinants

Let $A$ be an $n\times n$ matrix, let $c$ be a scalar and let $i\ne j$.

$A_{Ri\to x}$ means $A$ but with row $i$ replaced by $x$.

  1. If $i\ne j$, then $\det(A_{Ri\leftrightarrow Rj})=-\det(A)$ (swapping two rows changes the sign of det).
  2. $\det(A_{Ri\to c Ri}) = c\det(A)$ (scaling one row scales $\det(A)$ in the same way)
  3. $\det(A_{Ri\to Ri + c Rj}) = \det(A)$ (adding a multiple of one row to another row doesn't change $\det(A)$)
↓ Slide 4

Corollary

If an $n\times n$ matrix $A$ has two equal rows (or columns), then $\det(A)=0$, and $A$ is not invertible.

Proof

↓ Slide 5

Examples

↓ Slide 6

Corollary

If $\def\row{\text{row}}\row_i(A)=c\cdot \row_j(A)$ for some $i\ne j$ and some $c\in \mathbb{R}$, then $\det(A)=0$.

Proof

↓ Slide 7

Effect of EROs on the determinant

We've seen that:

  1. swapping two rows of the matrix multiplies the determinant by $-1$;
  2. scaling one of the rows of the matrix by $c$ scales the determinant by $c$; and
  3. replacing row $j$ by “row $j$ ${}+{}$ $c\times {}$ (row $i$)”, where $c$ is a scalar and $i\ne j$ does not change the determinant.
↓ Slide 8

Using EROs to find the determinant

↓ Slide 9

Example: using EROs to find the determinant

\begin{align*}\def\vm#1{\left|\begin{smallmatrix}#1\end{smallmatrix}\right|}\vm{1&3&1&3\\\color{red}4&\color{red}8&\color{red}0&\color{red}{12}\\0&1&3&6\\2&2&1&6}&= \color{red}{4}\vm{1&3&1&\color{blue}3\\1&2&0&\color{blue}3\\0&1&3&\color{blue}6\\2&2&1&\color{blue}6}=4\cdot \color{blue}3\vm{\color{green}1&3&1&1\\\color{red}1&2&0&1\\\color{red}0&1&3&2\\\color{red}2&2&1&2} \\&=12\vm{1&3&1&1\\\color{blue}0&\color{blue}{-1}&\color{blue}{-1}&\color{blue}{0}\\\color{blue}0&\color{blue}1&\color{blue}3&\color{blue}2\\0&-4&-1&-0} =\color{blue}{-}12\vm{1&3&1&1\\0&\color{green}1&3&2\\0&\color{red}{-1}&{-1}&{0}\\0&\color{red}{-4}&-1&0} \\&=-12\vm{1&3&1&1\\0&1&3&2\\0&0&\color{green}2&2\\0&0&\color{red}{11}&8} =-12\vm{1&3&1&1\\0&1&3&2\\0&0&2&2\\0&0&0&-3} \\&=-12(1\times1\times2\times(-3))=72. \end{align*}

→ Slide 10

Finding the inverse of an invertible $n\times n$ matrix

↓ Slide 11

The adjoint of a square matrix

Let $A$ be an $n\times n$ matrix. Recall that $C_{ij}$ is the $(i,j)$ cofactor of $A$. The matrix of cofactors of $A$ is the $n\times n$ matrix $C$ whose $(i,j)$ entry is $C_{ij}$.

The adjoint of $A$ is the $n\times n$ matrix $J=C^T$, the transpose of the matrix of cofactors.

↓ Slide 12

Example: $n=2$

If $A=\def\mat#1{\begin{bmatrix}#1\end{bmatrix}}\def\vm#1{\begin{vmatrix}#1\end{vmatrix}}\mat{a&b\\c&d}$, then $C=\mat{d&-c\\-b&a}$, so the adjoint of $A$ is $J=C^T=\mat{d&-b\\-c&a}$.

↓ Slide 13

Example: $n=3$

Find $J$, the adjoint of $\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$, and compute $A^{-1}$.

↓ Slide 14

Theorem: key property of the adjoint of a square matrix

If $A$ is any $n\times n$ matrix and $J$ is its adjoint, then $AJ=(\det A)I_n=JA$.

Proof

↓ Slide 15

Corollary: a formula for the inverse of a square matrix

If $A$ is any $n\times n$ matrix with $\det(A)\ne 0$, then $A$ is invertible, and $A^{-1}=\frac1{\det A}J$ where $J$ is the adjoint of $A$.

Proof

↓ Slide 16

Example ($n=4$)

Let $A=\mat{1&0&0&0\\1&2&0&0\\1&2&3&0\\1&2&3&4}$.

↓ Slide 17

Example ($n=4$)

Let $A=\mat{1&0&0&0\\1&2&0&0\\1&2&3&0\\1&2&3&4}$.