↓ Slide 1

Last time

↓ Slide 2

Example

Short version: sum along first row of (entries $\times$ cofactors)

↓ Slide 3

Notation

To save having to write $\det$ all the time, we sometimes write the entries of a matrix inside vertical bars $|\ |$ to mean the determinant of that matrix. Using this notation (and doing a few steps in our heads), we can rewrite the previous example as:

\begin{align*}\def\vm#1{\begin{vmatrix}#1\end{vmatrix}}\vm{1&2&3\\7&8&9\\11&12&13} &= 1\vm{8&9\\12&13} -2\vm{7&9\\11&13} + 3\vm{7&8\\11&12}\\ &=-4 -2(-8)+3(-4)\\ &=0.\end{align*}

↓ Slide 4

Step 4: the determinant of an $n\times n$ matrix

If $\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}A=\mat{a_{11}&a_{12}&\dots&a_{1n}\\\vdots&&&\vdots\\a_{n1}&a_{n2}&\dots&a_{nn}}$ is an $n\times n$ matrix, then \[\det A=a_{11}C_{11}+a_{12}C_{12}+\dots+a_{1n}C_{1n}.\]

↓ Slide 5

Example

\begin{align*} \def\vm#1{\left|\begin{smallmatrix}#1\end{smallmatrix}\right|} \vm{\color{red}1&\color{red}0&\color{red}2&\color{red}3\\0&2&1&-1\\2&0&0&1\\3&0&4&2} &= \color{red}1\vm{\color{blue}2&\color{blue}1&\color{blue}{-1}\\0&0&1\\0&4&2}-\color{red}0\vm{0&1&-1\\2&0&1\\3&4&2}+\color{red}2\vm{\color{orange}0&\color{orange}2&\color{orange}{-1}\\2&0&1\\3&0&2}-\color{red}3\vm{\color{purple}0&\color{purple}2&\color{purple}1\\2&0&0\\3&0&4} \\&= 1\left(\color{blue}2\vm{0&1\\4&2}-\color{blue}1\vm{0&1\\0&2}\color{blue}{-1}\vm{0&0\\0&4}\right) \\&\quad -0+2\left(\color{orange}0-\color{orange}{2}\vm{2&1\\3&2}\color{orange}{-1}\vm{2&0\\3&0}\right) \\&\quad -3\left(\color{purple}0-\color{purple}2\vm{2&0\\3&4}+\color{purple}1\vm{2&0\\3&0}\right) \\&=1(2(-4)-0-0)+2(-2(1)-0)-3(-2(8)+0) \\&=-8-4+48\\ &=36. \end{align*}

↓ Slide 6

Theorem: Laplace expansion along any row or column gives the determinant

  1. For any fixed $i$: $\det(A)=a_{i1}C_{i1}+a_{i2}C_{i2}+\dots+a_{in}C_{in}$ (Laplace expansion along row $i$)
  2. For any fixed $j$: $\det(A)=a_{1j}C_{1j}+a_{2j}C_{2j}+\dots+a_{nj}C_{nj}$ (Laplace expansion along column $j$)
↓ Slide 7

Example

\begin{align*} \vm{1&\color{red}0&2&3\\0&\color{red}2&1&-1\\2&\color{red}0&0&1\\3&\color{red}0&4&2} &= -\color{red}0+\color{red}2\vm{1&2&3\\\color{purple}2&\color{purple}0&\color{purple}1\\3&4&2}-\color{red}0+\color{red}0\\ &=2\left(-\color{purple}2\vm{2&3\\4&2}+\color{purple}0-\color{purple}1\vm{1&2\\3&4}\right)\\ &=2(-2(-8)-(-2))\\ &=36. \end{align*}

↓ Slide 8

Corollary: a matrix with a zero row or column isn't invertible

If an $n\times n$ matrix $A$ has a zero row or a zero column, then $\det(A)=0$ and $A$ isn't invertible.

Proof

Expand $\det(A)$ along the zero row or column

↓ Slide 9

Definition: "upper triangular" and "diagonal"

An $n\times n$ matrix is upper triangular if all the entries below the main diagonal are zero.

An $n\times n$ matrix is diagonal if the only non-zero entries are on its main diagonal.

↓ Slide 10

Corollary: the determinant of an upper triangular matrix

If $A$ is an upper triangular matrix or a diagonal matrix, then the determinant of $A$ is the product of its diagonal entries: \[\det(A)=a_{11}a_{22}\dots a_{nn}.\]

↓ Slide 11

Proof by induction on $n$

↓ Slide 12

Examples

  1. For any $n$, we have $\det(I_n)=1\cdot 1\cdots 1 = 1$.
  2. For any $n$, we have $\det(5I_n)=5^n$.
    • Careful: $\det(5A)\ne 5\det(A)$!
    • Actually, $\det(5A)=5^n\det(A)$ for any $n\times n$ A (exercise)
  3. $\vm{1&9&43&23434&4&132\\0&3&43&2&-1423&-12\\0&0&7&19&23&132\\0&0&0&2&0&0\\0&0&0&0&-1&-903\\0&0&0&0&0&6}=1\cdot3\cdot7\cdot2\cdot(-1)\cdot6 = 252$.
↓ Slide 13

Theorem: important properties of the determinant

Let $A$ be an $n\times n$ matrix.

  1. $A$ is invertible if and only if $\det(A)\ne0$.
  2. $\det(A^T)=\det(A)$
  3. If $B$ is another $n\times n$ matrix, then $\det(AB)=\det(A)\det(B)$.

Corollary on invertibility

  1. $A^T$ is invertible if and only if $A$ is invertible
  2. $AB$ is invertible if and only if both $A$ and $B$ are invertible
↓ Slide 14

Theorem: row/column operations and determinants

Let $A$ be an $n\times n$ matrix, let $c$ be a scalar and let $i\ne j$.

$A_{Ri\to x}$ means $A$ but with row $i$ replaced by $x$.

  1. If $i\ne j$, then $\det(A_{Ri\leftrightarrow Rj})=-\det(A)$ (swapping two rows changes the sign of det).
  2. $\det(A_{Ri\to c Ri}) = c\det(A)$ (scaling one row scales $\det(A)$ in the same way)
  3. $\det(A_{Ri\to Ri + c Rj}) = \det(A)$ (adding a multiple of one row to another row doesn't change $\det(A)$)
↓ Slide 15

Corollary

If an $n\times n$ matrix $A$ has two equal rows (or columns), then $\det(A)=0$, and $A$ is not invertible.

Proof

↓ Slide 16

Examples

↓ Slide 17

Corollary

If $\def\row{\text{row}}\row_i(A)=c\cdot \row_j(A)$ for some $i\ne j$ and some $c\in \mathbb{R}$, then $\det(A)=0$ (and so $A$ isn't invertible).

Proof

↓ Slide 18

Effect of EROs on the determinant

We've seen that:

  1. swapping two rows of the matrix multiplies the determinant by $-1$;
  2. scaling one of the rows of the matrix by $c$ scales the determinant by $c$; and
  3. replacing row $j$ by “row $j$ ${}+{}$ $c\times {}$ (row $i$)”, where $c$ is a scalar and $i\ne j$ does not change the determinant.
↓ Slide 19

Using EROs to find the determinant

↓ Slide 20

Example: using EROs to find the determinant

\begin{align*}\vm{1&3&1&3\\\color{red}4&\color{red}8&\color{red}0&\color{red}{12}\\0&1&3&6\\2&2&1&6}&= \color{red}{4}\vm{1&3&1&\color{blue}3\\1&2&0&\color{blue}3\\0&1&3&\color{blue}6\\2&2&1&\color{blue}6}=4\cdot \color{blue}3\vm{\color{green}1&3&1&1\\\color{red}1&2&0&1\\\color{red}0&1&3&2\\\color{red}2&2&1&2} \\&=12\vm{1&3&1&1\\\color{blue}0&\color{blue}{-1}&\color{blue}{-1}&\color{blue}{0}\\\color{blue}0&\color{blue}1&\color{blue}3&\color{blue}2\\0&-4&-1&-0} =\color{blue}{-}12\vm{1&3&1&1\\0&\color{green}1&3&2\\0&\color{red}{-1}&{-1}&{0}\\0&\color{red}{-4}&-1&0} \\&=-12\vm{1&3&1&1\\0&1&3&2\\0&0&\color{green}2&2\\0&0&\color{red}{11}&8} =-12\vm{1&3&1&1\\0&1&3&2\\0&0&2&2\\0&0&0&-3} \\&=-12(1)(1)(2)(-3)=72. \end{align*}