The transpose of an $n\times m$ matrix $A$ is the $m\times n$ matrix $A^T$ whose $(i,j)$ entry is the $(j,i)$ entry of $A$. In other words, to get $A^T$ from $A$, you write the rows of $A$ as columns, and vice versa; equivalently, you reflect $A$ in its main diagonal.
For example, $\def\mat#1{\begin{bmatrix}#1\end{bmatrix}}\mat{a&b\\c&d}^T=\mat{a&c\\b&d}$ and $\mat{1&2&3\\4&5&6}^T=\mat{1&4\\2&5\\3&6}$.
If $a$ is a $1\times m$ row vector and $b$ is an $m\times 1$ column vector, then \[ ab=b^Ta^T.\]
Formally, for any matrix $A$ and any $i,j$, we have \begin{align*}\def\col#1{\text{col}_{#1}}\def\row#1{\text{row}_{#1}} \row i(A^T)&=\col i(A)^T\\\col j(A^T)&=\row j(A)^T .\end{align*}
If $A$, $B$ are matrices and the matrix product $AB$ is defined, then $B^TA^T$ is also defined, and $(AB)^T=B^TA^T$.
For $A$: $n\times n$ we'll define a number $\det(A)$ so that \[ A\text{ is invertible} \iff \det(A)\ne0.\]
If $A$ is an $n\times n$ matrix, then the $(i,j)$ minor of $A$ is defined to be the determinant of the $(n-1)\times (n-1)$ matrix formed by removing row $i$ and column $j$ from $A$. We will write this number as $M_{ij}$.
Short version: to find $M_{ij}$: delete the row and col containing $(i,j)$ entry, then take determinant.
Example: for $A=\mat{3&5\\-4&7}$:
Short version: to find $M_{ij}$: delete the row and col containing $(i,j)$ entry, then take determinant.
Example: for $A=\mat{1&2&3\\7&8&9\\11&12&13}$:
The $(i,j)$ cofactor of an $n\times n$ matrix $A$ is $(-1)^{i+j}M_{ij}$, where $M_{ij}$ is the (i,j) minor of $A$.
Note that $(-1)^{i+j}$ is $+1$ or $-1$, and can looked up in the matrix of signs: $\mat{+&-&+&-&\dots\\-&+&-&+&\dots\\+&-&+&-&\dots\\\vdots&\vdots&\vdots&\vdots&\ddots}$. This matrix starts with a $+$ in the $(1,1)$ entry (corresponding to $(-1)^{1+1}=(-1)^2=+1$) and the signs then alternate.
Short version: minors with sign changes $\mat{+&-&+&-&\dots\\-&+&-&+&\dots\\+&-&+&-&\dots\\\vdots&\vdots&\vdots&\vdots&\ddots}$
If $A=\mat{3&5\\-4&7}$, then
Short version: minors with sign changes $\mat{+&-&+&-&\dots\\-&+&-&+&\dots\\+&-&+&-&\dots\\\vdots&\vdots&\vdots&\vdots&\ddots}$
If $A=\mat{1&2&3\\7&8&9\\11&12&13}$, then
If $A=\mat{a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}}$ is a $3\times 3$ matrix, then \[\det A=a_{11}C_{11}+a_{12}C_{12}+a_{13}C_{13}.\] Here $C_{ij}$ are the cofactors of $A$.
Short version: sum along first row of (entries $\times$ cofactors)
If $A$ is an $n\times n$ matrix, then \[\det A=a_{11}C_{11}+a_{12}C_{12}+\dots+a_{1n}C_{1n}.\] Here $C_{ij}$ are the cofactors of $A$.
\begin{align*} \def\vm#1{\left|\begin{smallmatrix}#1\end{smallmatrix}\right|} \vm{\color{red}1&\color{red}0&\color{red}2&\color{red}3\\0&2&1&-1\\2&0&0&1\\3&0&4&2} &= \color{red}1\vm{\color{blue}2&\color{blue}1&\color{blue}-1\\0&0&1\\0&4&2}-\color{red}0\vm{0&1&-1\\2&0&1\\3&4&2}+\color{red}2\vm{\color{orange}0&\color{orange}2&\color{orange}{-1}\\2&0&1\\3&0&2}-\color{red}3\vm{\color{purple}0&\color{purple}2&\color{purple}1\\2&0&0\\3&0&4} \\&= 1\left(\color{blue}2\vm{0&1\\4&2}-\color{blue}1\vm{0&1\\0&2}\color{blue}{-1}\vm{0&0\\0&4}\right) \\&\quad -0+2\left(\color{orange}0-\color{orange}{2}\vm{2&1\\3&2}\color{orange}{-1}\vm{2&0\\3&0}\right) \\&\quad -3\left(\color{purple}0-\color{purple}2\vm{2&0\\3&4}+\color{purple}1\vm{2&0\\3&0}\right) \\&=1(2(-4)-0-0)+2(-2(1)-0)-3(-2(8)+0) \\&=-8-4+48\\ &=36. \end{align*}