↓ Slide 1

Last time

↓ Slide 2

Proposition: uniqueness of the inverse

If $A$ is an invertible $n\times n$ matrix, then $A$ has a unique inverse.

Proof

↓ Slide 3

Definition/notation: $A^{-1}$

If $A$ is an invertible $n\times n$ matrix, then the unique $n\times n$ matrix $C$ with $AC=I_n=CA$ is called the inverse of $A$. If $A$ is invertible, then we write $A^{-1}$ to mean the (unique) inverse of $A$.

↓ Slide 4

Examples again

↓ Slide 5

Warning

If $A$, $B$ are matrices, never write down $\frac AB$. It doesn't make (unambiguous) sense!

↓ Slide 6

Proposition: solving $AX=B$ when $A$ is invertible

If $A$ is an invertible $n\times n$ matrix and $B$ is an $n\times k$ matrix, then $ AX=B$ has a unique solution: $X=A^{-1}B$.

Proof

↓ Slide 7

Corollary

If $A$ is an $n\times n$ matrix and there is a non-zero $n\times m$ matrix $K$ so that $AK=0_{n\times m}$, then $A$ is not invertible.

Proof

↓ Slide 8

Example

↓ Slide 9

Example

→ Slide 10

$2\times 2$ matrices: determinants and invertibility

↓ Slide 11

Question

Which $2\times 2$ matrices are invertible? For the invertible matrices, can we find their inverse?

↓ Slide 12

Lemma

If $A=\mat{a&b\\c&d}$ and $J=\mat{d&-b\\-c&a}$, then we have \[ AJ=(ad-bc) I_2=JA.\]

↓ Slide 13

Definition: the determinant of a $2\times 2$ matrix

The number $ad-bc$ is called the determinant of the $2\times 2$ matrix $A=\mat{a&b\\c&d}$. We write $\det(A)=ad-bc$ for this number.

↓ Slide 14

Theorem: the determinant determines the invertibility (and inverse) of a $2\times 2$ matrix

Let $A=\mat{a&b\\c&d}$ be a $2\times 2$ matrix.

  1. $A$ is invertible if and only if $\det(A)\ne0$.
  2. If $A$ is invertible, then $A^{-1}=\frac{1}{\det(A)}\mat{d&-b\\-c&a}$.
↓ Slide 15

Proof

If $\det(A)\ne 0$:

If $\det(A)=0$:

↓ Slide 16

Using the inverse to solve a matrix equation