→ Slide 1

Matrix equations

In a similar way, any linear system \begin{align*} a_{11}x_1+a_{12}x_2+\dots+a_{1m}x_m&=b_1\\ a_{21}x_1+a_{22}x_2+\dots+a_{2m}x_m&=b_2\\ \hphantom{a_{11}}\vdots \hphantom{x_1+a_{22}}\vdots\hphantom{x_2+\dots+{}a_{nn}} \vdots\ & \hphantom{{}={}\!} \vdots\\ a_{n1}x_1+a_{n2}x_2+\dots+a_{nm}x_m&=b_n \end{align*} can be written in the form \[ A\vec x=\vec b\] where $A$ is the $n\times m $ matrix, called the coefficient matrix of the linear system, whose $(i,j)$ entry is $a_{ij}$ (the number in front of $x_j$ in the $i$th equation of the system).

↓ Slide 2

Solutions of matrix equations

↓ Slide 3

Example

If $A=\m{1&0\\0&0}$ and $B=0_{2\times 3}$, then any solution $X$ to $AX=B$ must be $2\times 3$.

↓ Slide 4

Example

↓ Slide 5

Example

→ Slide 6

Invertibility

↓ Slide 7

Example

↓ Slide 8

Simpler: $1\times 1$ matrix equations

↓ Slide 9

Thinking about $a^{-1}$ for $a$ a number

↓ Slide 10

What about matrices?

↓ Slide 11

Example revisited

↓ Slide 12

Definition: invertible

An $n\times n$ matrix $A$ is invertible if there exists an $n\times n$ matrix $C$ so that \[ AC=I_n=C A.\] The matrix $C$ is called an inverse of $A$.

↓ Slide 13

Examples

↓ Slide 14

Proposition: uniqueness of the inverse

If $A$ is an invertible $n\times n$ matrix, then $A$ has a unique inverse.

Proof

↓ Slide 15

Definition/notation: $A^{-1}$

If $A$ is an invertible $n\times n$ matrix, then the unique $n\times n$ matrix $C$ with $AC=I_n=CA$ is called the inverse of $A$. If $A$ is invertible, then we write $A^{-1}$ to mean the (unique) inverse of $A$.

↓ Slide 16

Examples again

↓ Slide 17

Warning

If $A$, $B$ are matrices, then $\frac AB$ doesn't make sense!

↓ Slide 18

Proposition: solving $AX=B$ when $A$ is invertible

If $A$ is an invertible $n\times n$ matrix and $B$ is an $n\times k$ matrix, then $ AX=B$ has a unique solution: $X=A^{-1}B$.

Proof

↓ Slide 19

Corollary

If $A$ is an $n\times n$ matrix and there is a non-zero $n\times m$ matrix $K$ so that $AK=0_{n\times m}$, then $A$ is not invertible.

Proof

↓ Slide 20

Example