~~REVEAL~~ ==== Row-column & matrix multiplication ==== * The **row-column product** of $a$ and $b$ is defined by \[\!\!\!\!\!\!\!\!\!\!ab=[\begin{smallmatrix}a_1&a_2&\dots&a_n\end{smallmatrix}]\left[\begin{smallmatrix}b_1\\b_2\\\vdots\\b_n\end{smallmatrix}\right]=a_1b_1+a_2b_2+\dots+a_nb_n.\] * $AB=$ matrix of all "row-of-$A$ times col-of-$B$" products * \[\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! \def\r{\left[\begin{smallmatrix}1&0&5\end{smallmatrix}\right]}\def\rr{\left[\begin{smallmatrix}2&-1&3\end{smallmatrix}\right]}\left[\begin{smallmatrix}1&0&5\\2&-1&3\end{smallmatrix}\right]\left[\begin{smallmatrix} 1&2\\3&4\\5&6\end{smallmatrix}\right]\def\s{\left[\begin{smallmatrix}1\\3\\5\end{smallmatrix}\right]}\def\ss{\left[\begin{smallmatrix}2\\4\\6\end{smallmatrix}\right]}=\left[\begin{smallmatrix}{\r\s}&{\r\ss}\\{\rr\s}&{\rr\ss}\end{smallmatrix}\right]=\left[\begin{smallmatrix}26&32\\14&18\end{smallmatrix}\right].\] ==== Matrix multiplication: the definition ==== * Let $A,B$ be matrices, with sizes * $A$: $n\times m$ * $B$: $m\times k$ * The product $AB$ is: the $n\times k$ matrix whose $(i,j)$ entry is \[ (AB)_{i,j} = \text{row}_i(A)\cdot \text{col}_j(B)\] * So the entries of $AB$ are all possible [[row-column multiplication|row-column products]] of a row of $A$ with a column of $B$ ==== "Compatible" sizes for $AB$ to be defined ==== * We need the sizes of $A$ and $B$ to be "compatible" for $AB$ to be defined * Need $A$: $n\times m$ and $B$: $m\times k$ (same numbers "in the middle") * If $A,B$ are matrices, with sizes * $A$: $n\times m$ * $B$: $\ell\times k$ with $\ell\ne m$, * then the matrix product $AB$ is **undefined**. ==== Example 1 ==== If $\newcommand{\mat}[1]{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]} A=\mat{1&0&5\\2&-1&3}$ and $B=\mat{1&2\\3&4\\5&6}$, * $AB=\mat{26&32\\14&18}$ * $BA=\mat{5&-2&11\\11&-4&27\\17&-6&43}$. * Note that $AB$ and $BA$ are both defined, but $AB\ne BA$ * $AB$ and $BA$ don't even have the [[same size]]. ==== Example 2 ==== If $A=\mat{1&2\\3&4\\5&6}$, $B=\mat{2&1&1\\1&2&0\\1&0&2\\2&2&1}$ and $C=\mat{1&3&0&7\\0&4&6&8}$, * $A$ is $3\times 2$, $B$ is $4\times 3$ and $C$ is $2\times 4$, so * $AB$, $CA$ and $BC$ don't exist (undefined); * $AC$ exists and is $3\times 4$; * $BA$ exists and is $4\times 2$; and * $CB$ exists and is $2\times 2$. * In particular, $AB\ne BA$ and $AC\ne CA$ and $BC\ne CB$ (undefined vs defined!) ==== Example 3 ==== If $A=\mat{0&1\\0&0}$ and $B=\mat{0&0\\1&0}$, then * $AB=\mat{1&0\\0&0}$ * $BA=\mat{0&0\\0&1}$. * So $AB$ and $BA$ are both defined and have the [[same size]], but they are not [[equal matrices]]: $AB\ne BA$. ==== Example 4 ==== If $A=0_{n\times n}$ is the $n\times n$ zero matrix and $B$ is any $n\times n$ matrix, then * $AB=0_{n\times n}$, and * $BA=0_{n\times n}$. * So in this case, we do have $AB=BA$. ==== Example 5 ==== If $A=\mat{1&2\\3&4}$ and $B=\mat{7&10\\15&22}$, then * $AB=\mat{37&54\\81&118}$ * $BA=\mat{37&54\\81&118}$ * So $AB=BA$ for these particular matrices $A$ and $B$. ==== Example 6 ==== If $A=\mat{1&2\\3&4}$ and $B=\mat{6&10\\15&22}$, then * $AB=\mat{36&54\\78&118}$ * $BA= \mat{36&52\\81&118}$ * So $AB\ne BA$. ==== Commuting matrices I ==== {{page>commute}} * Because it's true that $AB=BA$ for every choice of matrices $A$ and $B$, we say that **matrix multiplication is not commutative**. ==== Commuting matrices II ==== * What can we say about a pair of commuting matrices? * Suppose $AB=BA$ and think about sizes. * $A$: $n\times m$ * $B$: $\ell\times k$ * $AB$ is defined, so $m=\ell$. * $BA$ is defined, so $k=n$. * $AB$ is $n\times k$ and $BA$ is $\ell\times m$, so $n=\ell$ and $k=m$. So $n=\ell=m=k$! * $A$ and $B$ must both be $n\times n$: they're //square matrices of the same size//. ==== Commuting matrices III ==== * If $A$ and $B$ commute, they must be square matrices of the same size. * **Some** pairs of square matrices $A$ and $B$ of the same size do commute... * ....but not all! * See examples above. ==== The $n\times n$ identity matrix ==== {{page>identity matrix}} ==== Examples ==== - $I_1=[1]$ - $I_2=\mat{1&0\\0&1}$ - $I_3=\mat{1&0&0\\0&1&0\\0&0&1}$ - $I_4=\mat{1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1}$, and so on! ==== Properties of $I_n$ ==== - $I_nA=A$ for any $n\times m$ matrix $A$; - $AI_m=A$ for any $n\times m$ matrix $A$; and - $I_nB=B=BI_n$ for any $n\times n$ matrix $B$. * In particular, $I_n$ commutes with every other square $n\times n$ matrix $B$. ==== Proof that $I_nA=A$ for $A$: $n\times m$ ==== * $I_nA$ is $n\times m$ (from definition of matrix multiplication) * So $I_nA$ has same size as $A$ * $\text{row}_i(I_n)=[0~0~\dots~0~1~0~\dots~0]$, with $1$ in $i$th place * $\text{col}_j(A)=\mat{a_{1j}\\a_{2j}\\\vdots\\a_{nj}}$ * So $(i,j)$ entry of $I_nA$ is \[\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\text{row}_i(I_n)\cdot \text{col}_j(A)= 0a_{1j}+0a_{2j}+\dots+1a_{ij}+\dots+0a_{nj} =a_{ij}\] * same as $(i,j)$ entry of $A$. * So $I_nA=A$ ==== More proofs==== * Proof that $A=AI_m$ for $A$: $n\times m$ is very similar (exercise) * Now if $B$ is $n\times n$, take $n=m$ and $A=B$ above: * $I_nB=B$ and $BI_n=B$ * So $I_nB=B=BI_n$ * So $I_n$ commutes with $B$, for any $n\times n$ matrix $B$.