~~REVEAL~~ ===== Solving linear systems. Examples; how many solutions? ===== ==== More examples ==== ==== Example 1 ==== If $ f(x)=ax^2+bx+c$ and $f(1)=3$, $f(2)=2$ and $f(3)=4$, find $f(x)$. * $f(1)=3\implies a+b+c=3$ * $f(2)=2\implies 4a+2b+c=2$ * $f(3)=4\implies 9a+3b+c=4$ * $\begin{gather*} a+b+c=3\\4a+2b+c=2\\9a+3b+c=4\end{gather*}$ * Solve using RREF. ==== ==== \begin{align*}\def\go#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]} \def\ar#1{\\\xrightarrow{#1}&} \go{1&1&1&3}{4&2&1&2}{9&3&1&4} \xrightarrow{R2\to R2-4R1\text{ and }R3\to R3-9R1}& \go{1&1&1&3}{0&-2&-3&-10}{0&-6&-8&-23} \ar{R2\to -\tfrac12 R2} \go{1&1&1&3}{0&1&\tfrac32&5}{0&-6&-8&-23} \ar{R3\to R3+6R2} \go{1&1&1&3}{0&1&\tfrac32&5}{0&0&1&7} \end{align*} * So far: in REF! ==== ==== \begin{align*} \go{1&1&1&3}{0&1&\tfrac32&5}{0&0&1&7} \xrightarrow{R1\to R1-R3\text{ and }R2\to R2-\tfrac32R3}& \go{1&1&0&-4}{0&1&0&-5.5}{0&0&1&7} \ar{R1\to R1-R2} \go{1&0&0&1.5}{0&1&0&-5.5}{0&0&1&7} \end{align*} * So $a=1.5$, $b=-5.5$ and $c=7$ * So $f(x)=1.5x^2-5.5x+7$. ==== Example 2 ==== Solve the linear system \begin{align*}3x+4y-2z&=1\\x+y+z&=4\\2x+5y+z&=3\end{align*} by transforming the [[augmented matrix]] into [[reduced row echelon form]]. ==== ==== \begin{align*} \def\go#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]} \def\ar#1{\\\xrightarrow{#1}&} \go{3&4&-2&1}{1&1&1&4}{2&5&1&3} \xrightarrow{R1\leftrightarrow R2}& \go{1&1&1&4}{3&4&-2&1}{2&5&1&3} \ar{R2\to R2-3R1\text{ and }R3\to R3-2R1} \go{1&1&1&4}{0&1&-5&-11}{0&3&-1&-5} \ar{R3\to R3-3R1} \go{1&1&1&4}{0&1&-5&-11}{0&0&14&28} \ar{R3\to \tfrac1{14}R3} \go{1&1&1&4}{0&1&-5&-11}{0&0&1&2} \end{align*} * in REF, keep going for RREF... ==== ==== \begin{align*} \go{1&1&1&4}{0&1&-5&-11}{0&0&1&2} \xrightarrow{R1\to R1-R3\text{ and }R2\to R2+5R3}& \go{1&1&0&2}{0&1&0&-1}{0&0&1&2} \ar{R1\to R1-R2} \go{1&0&0&3}{0&1&0&-1}{0&0&1&2} \end{align*} * $x=3$, $y=-1$, $z=2$ * There is a **unique solution**: $(3,-1,2)$. * No free variables. ==== Example 3 ==== Solve the linear system \begin{align*}3x+y-2z+4w&=5\\x+z+w&=2\\4x+2y-6z+6w&=0\end{align*} ==== ==== \begin{align*} \go{3&1&-2&4&5}{1&0&1&1&2}{4&2&-6&6&0} \xrightarrow{R1\leftrightarrow R2}& \go{1&0&1&1&2}{3&1&-2&4&5}{4&2&-6&6&0} \ar{R2\to R2-3R1\text{ and }R3\to R3-4R1} \go{1&0&1&1&2}{0&1&-5&1&-1}{0&2&-10&2&-8} \ar{R3\to R3-2R2} \go{1&0&1&1&2}{0&1&-5&1&-1}{0&0&0&0&-6} \ar{R3\to -\tfrac16 R3} \go{1&0&1&1&2}{0&1&-5&1&-1}{0&0&0&0&1} \end{align*} ==== ==== \[ \go{1&0&1&1&2}{0&1&-5&1&-1}{0&0&0&0&1}\] * This is in [[REF]]. * The last row corresponds to the equation $0=1$ * This has no solution! * So the original linear system has no solutions. * Call the system **inconsistent** (no solutions). * To detect this: put in REF and find a row $[0~0~\dots~0~1]$. ==== Example 4 ==== For which value(s) of $k$ does the following linear system have infinitely many solutions? \begin{gather*}x+y+z=1\\x-z=5\\2x+3y+kz=-2\end{gather*} ==== ==== \begin{align*} \go{1&1&1&1}{1&0&-1&5}{2&3&k&-2} \xrightarrow{R2\to R2-R1\text{ and }R3\to R3-2R1}& \go{1&1&1&1}{0&-1&-2&4}{0&1&k-2&-4} \ar{R2\to -R2} \go{1&1&1&1}{0&1&2&-4}{0&1&k-2&-4} \ar{R3\to R3-R2} \go{1&1&1&1}{0&1&2&-4}{0&0&k-4&0} \end{align*} ==== ==== \[\go{1&1&1&1}{0&1&2&-4}{0&0&k-4&0}\] * If $k=4$: * get $\go{1&1&1&1}{0&1&2&-4}{0&0&0&0}$, in REF * $z$ [[free variable|free]], so infinitely many solutions * If $k\ne4$ then $k-4\ne0$. * $R3\to \tfrac1{k-4}R3$: $\go{1&1&1&1}{0&1&2&-4}{0&0&1&0}$, in REF * no free vars, so not infinitely many solutions * So infinitely many solutions $\iff k=4$. ==== Observations ==== For a system of linear equations with
#vars variables, #eqs equations: * If #vars > #eqs, at least one var is free (see REF!) - either system is inconsistent.... - ....or it has infinitely many solutions, one for each value of the free vars. - The **dimension** of the set of solutions is the number of free variables. * If there's a **unique** solution:
always have #vars ≤ #eqs ====== Chapter 2: The algebra of matrices ====== ==== ==== {{page>matrix}} * {{page>(i,j) entry}} ==== Examples ==== * $B=\begin{bmatrix} 99&3&5\\7&-20&14\end{bmatrix}$ is a $2\times 3$ matrix * the $(1,1)$ entry of $B$ is $b_{11}=99$ * the $(1,3)$ entry of $B$ is $b_{13}=5$ * the $(2,1)$ entry of $B$ is $b_{21}=7$ * etc. * $(3,2)$ entry of $B$? * undefined! ==== ===== * $\left[\begin{smallmatrix}3\\2\\4\\0\\-1\end{smallmatrix}\right]$ is a $5\times 1$ matrix. * A matrix like this with one column is called a **column vector**. * $\begin{bmatrix}3&2&4&0&-1\end{bmatrix}$ is a $1\times 5$ matrix. * A matrix like this with one row is called a **row vector**. * Even though these have the same entries, they have a different "shape", or "size" and they are different matrices. ==== Size of a matrix ==== {{page>same size}} ==== Equality of matrices ==== {{page>equal matrices}} ==== Examples ==== * $\begin{bmatrix}3\\2\\4\\0\\-1\end{bmatrix}\ne \begin{bmatrix}3&2&4&0&-1\end{bmatrix}$, since these matrices have different sizes: the first is $5\times 1$ but the second is $1\times 5$. ==== ==== * $\begin{bmatrix}1\\2\end{bmatrix}\ne\begin{bmatrix}1 &0\\2&0\end{bmatrix}$ * not the same size. * $\begin{bmatrix}1&0\\0&1\end{bmatrix}\ne \begin{bmatrix}1&0\\1&1\end{bmatrix}$ * same size but the $(2,1)$ entries are different. ==== ==== * If $\begin{bmatrix}3x&7y+2\\8z-3&w^2\end{bmatrix}=\begin{bmatrix}1&2z\\\sqrt2&9\end{bmatrix}$ then we know that all the corresponding entries are equal * We get four equations:\begin{align*}3x&=1\\7y+2&=2z\\8z-3&=\sqrt2\\w^2&=9\end{align*}