==== Examples ==== === Example 1 === A function $f(x)$ has the form \[ f(x)=ax^2+bx+c\] where $a,b,c$ are constants. Given that $f(1)=3$, $f(2)=2$ and $f(3)=4$, find $f(x)$. == Solution == \begin{gather*} f(1)=3\implies a\cdot 1^2+b\cdot 1 +c = 3\implies a+b+c=3\\ f(2)=2\implies a\cdot 2^2+b\cdot 2 +c = 3\implies 4a+2b+c=2\\ f(3)=4\implies a\cdot 3^2+b\cdot 3 +c = 3\implies 9a+3b+c=4 \end{gather*} We get a system of three linear equations in the variables $a,b,c$: \begin{gather*} a+b+c=3\\ 4a+2b+c=2\\ 9a+3b+c=4 \end{gather*} Let's reduce the augmented matrix for this system to RREF. \begin{align*} \def\go#1#2#3{\begin{bmatrix}#1\\#2\\#3\end{bmatrix}} \def\ar#1{\\[6pt]\xrightarrow{#1}&} &\go{1&1&1&3}{4&2&1&2}{9&3&1&4} \ar{R2\to R2-4R1\text{ and }R3\to R3-9R1} \go{1&1&1&3}{0&-2&-3&-10}{0&-6&-8&-23} \ar{R2\to -\tfrac12 R2} \go{1&1&1&3}{0&1&\tfrac32&5}{0&-6&-8&-23} \ar{R3\to R3+6R2} \go{1&1&1&3}{0&1&\tfrac32&5}{0&0&1&7} \ar{R1\to R1-R3\text{ and }R2\to R2-\tfrac32R3} \go{1&1&0&-4}{0&1&0&-5.5}{0&0&1&7} \ar{R1\to R1-R2} \go{1&0&0&1.5}{0&1&0&-5.5}{0&0&1&7} \end{align*} So $a=1.5$, $b=-5.5$ and $c=7$; so \[ f(x)=1.5x^2-5.5x+7.\] === Example 2 === Solve the linear system \begin{align*}2x+4y-2z&=1\\x+y+z&=4\\2x+5y+z&=3\end{align*} by transforming the [[augmented matrix]] into [[reduced row echelon form]]. == Solution == \begin{align*} \def\go#1#2#3{\begin{bmatrix}#1\\#2\\#3\end{bmatrix}} \def\ar#1{\\[6pt]\xrightarrow{#1}&} &\go{3&4&-2&1}{1&1&1&4}{2&5&1&3} \ar{R1\leftrightarrow R2} \go{1&1&1&4}{3&4&-2&1}{2&5&1&3} \ar{R2\to R2-3R1\text{ and }R3\to R3-2R1} \go{1&1&1&4}{0&1&-5&-11}{0&3&-1&-5} \ar{R3\to R3-3R1} \go{1&1&1&4}{0&1&-5&-11}{0&0&14&28} \ar{R3\to \tfrac1{14}R3} \go{1&1&1&4}{0&1&-5&-11}{0&0&1&2} \ar{R1\to R1-R3\text{ and }R2\to R2+5R3} \go{1&1&0&2}{0&1&0&-1}{0&0&1&2} \ar{R1\to R1-R2} \go{1&0&0&3}{0&1&0&-1}{0&0&1&2} \end{align*} The solution is $x=3$, $y=-1$, $z=2$. So there is a unique solution: just one point in $\mathbb{R}^3$, namely $(3,-1,2)$. === Example 3 === Solve the linear system \begin{align*}3x+y-2z+4w&=5\\x+z+w&=2\\4x+2y-6z+6w&=0\end{align*} == Solution == \begin{align*} &\go{3&1&-2&4&5}{1&0&1&1&2}{4&2&-6&6&0} \ar{R1\leftrightarrow R2} \go{1&0&1&1&2}{3&1&-2&4&5}{4&2&-6&6&0} \ar{R2\to R2-3R1\text{ and }R3\to R3-4R1} \go{1&0&1&1&2}{0&1&-5&1&-1}{0&2&-10&2&-8} \ar{R3\to R3-2R2} \go{1&0&1&1&2}{0&1&-5&1&-1}{0&0&0&0&-6} \ar{R3\to -\tfrac16 R3} \go{1&0&1&1&2}{0&1&-5&1&-1}{0&0&0&0&1} \end{align*} This is in [[REF]]. The last row corresponds to the equation \[ 0=1\] which clearly has no solution! We conclude that this system has no solutions, and hence the original linear system has no solutions either. {{page>inconsistent}} === Example 4 === For which value(s) of $k$ does the following linear system have infinitely many solutions? \begin{gather*}x+y+z=1\\x-z=5\\2x+3y+kz=-2\end{gather*} == Solution == \begin{align*} &\go{1&1&1&1}{1&0&-1&5}{2&3&k&-2} \ar{R2\to R2-R1\text{ and }R3\to R3-2R1} \go{1&1&1&1}{0&-1&-2&4}{0&1&k-2&-4} \ar{R2\to -R2} \go{1&1&1&1}{0&1&2&-4}{0&1&k-2&-4} \ar{R3\to R3-R2} \go{1&1&1&1}{0&1&2&-4}{0&0&k-4&0} \end{align*} If $k-4=0$, then this matrix is in [[REF]]: \[\go{1&1&1&1}{0&1&2&-4}{0&0&0&0}\] In this situation, $z$ is a [[free variable]] (since there's no [[leading entry]] in the third column). For each value of $z$ we get a different solution, so if $k-4=0$, or equivalently, if $k=4$, then there are infinitely many different solutions. If $k-4\ne0$, then we can divide the third row by $k-4$ to get the REF: \[\go{1&1&1&1}{0&1&2&-4}{0&0&1&0}\] In this situtation, there are no free variables since $x$, $y$ and $z$ are all leading variables. So if $k-4\ne 0$, or equivalently if $k\ne 4$, then there are no free variables so there is not an infinite number of solutions. (The only possibilities are that there is is a unique solution or that the system is inconsistent; and in this case you can check that there is a unique solution, although we don't need to know this to answer the question). In conclusion, the system has infinitely many solutions if and only if $k=4$. /* ==== One more example ==== Solve the following [[linear system]]: \begin{align*} x+y+z&=2\\2x-z&=0\\x+3y+4z&=6\\3x+y&=2\end{align*} == Solution == We remark that there are more equations than unknowns... but this isn't a problem! We proceed as usual: \begin{align*} \def\go#1#2#3#4{\begin{bmatrix}#1\\#2\\#3\\#4\end{bmatrix}} \def\ar#1{\\[6pt]\xrightarrow{#1}&} &\go{1&1&1&2}{2&0&-1&0}{1&3&4&6}{3&1&0&2} \ar{R2\to R2-2R1,\ R3\to R3-R1\text{ and }R4\to R4-3R1} \go{1&1&1&2}{0&-2&-3&-4}{0&2&3&4}{0&-2&-3&-4} \ar{R3\to R3+R2\text{ and }R4\to R4-R2} \go{1&1&1&2}{0&1&1.5&2}{0&0&0&0}{0&0&0&0} \ar{R1\to R1-R2} \go{1&0&-0.5&0}{0&1&1.5&2}{0&0&0&0}{0&0&0&0} \end{align*} Now $z$ is a free variable, say $z=t$ where $t\in \mathbb{R}$, and from row 2 we get $y=2-1.5t$ and row 1 gives $x=0.5t$, so the solution is \[ \begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}0\\2\\0\end{bmatrix}+t\begin{bmatrix}0.5\\-1.5\\1\end{bmatrix},\quad t\in\mathbb{R}.\] */ ===== Observations about Gaussian elimination ===== {{page>gaussian elimination remarks}} ====== Chapter 2: The algebra of matrices ====== === Definition === {{page>matrix}} {{page>(i,j) entry}} === Example === If $B=\begin{bmatrix} 99&3&5\\7&-20&14\end{bmatrix}$, then $B$ is a $2\times 3$ matrix, and the $(1,1)$ entry of $B$ is $b_{11}=99$, the $(1,3)$ entry of $B$ is $b_{13}=5$, the $(2,1)$ entry is $b_{21}=7$, etc.