~~REVEAL~~ ==== Example ==== Use [[EROs]] to find the intersection of the planes \begin{align*} 3x+4y+7z&=2\\x+3z&=0\\y-2z&=5\end{align*} ==== Solution 1 ==== \begin{align*} \def\go#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]} \def\ar#1{\\\xrightarrow{#1}&} &\go{3&4&7&2}{1&0&3&0}{0&1&-2&5} \ar{\text{reorder rows}}\go{1&0&3&0}{0&1&-2&5}{3&4&7&2} \ar{R3\to R3-3R1}\go{1&0&3&0}{0&1&-2&5}{0&4&-2&2} \ar{R3\to R3-4R2}\go{1&0&3&0}{0&1&-2&5}{0&0&6&-18} \ar{R3\to \tfrac16 R3}\go{1&0&3&0}{0&1&-2&5}{0&0&1&-3} \end{align*} ==== ==== $\go{1&0&3&0}{0&1&-2&5}{0&0&1&-3}$ * from the last row, we get $z=-3$ * from the second row, we get $y-2z=5$ * so $y-2(-3)=5$ * so $y=-1$ * from the first row, we get $x+3z=0$ * so $x+3(-3)=0$ * so $x=9$ * Conclusion: $\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}9\\-1\\-3\end{bmatrix}$ is the only solution. ==== Solution 2 ==== We start in the same way, but by performing more [[EROs]] we make the algebra at the end simpler. \begin{align*} \def\go#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]} \def\ar#1{\\\xrightarrow{#1}&} &\go{3&4&7&2}{1&0&3&0}{0&1&-2&5} \ar{\ldots \text{same EROs as above}\ldots}\go{1&0&3&0}{0&1&-2&5}{0&0&1&-3} \ar{R2\to R2+2R3}\go{1&0&3&0}{0&1&0&-1}{0&0&1&-3} \ar{R1\to R1-3R3}\go{1&0&0&9}{0&1&0&-1}{0&0&1&-3} \end{align*} ==== ==== \[ \go{1&0&0&9}{0&1&0&-1}{0&0&1&-3}\] * from the last row, we get $z=-3$ * from the second row, we get $y=-1$ * from the first row, we get $x=9$ * So $\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}9\\-1\\-3\end{bmatrix}$ is the only solution. ==== Discussion ==== Both solutions use EROs to transform the [[augmented matrix]]. * Solution 1: $\left[\begin{smallmatrix}1&0&3&0\\0&1&-2&5\\0&0&1&-3\end{smallmatrix}\right]$. * "Staircase pattern": 1s on "steps", zeros below steps * Called **row echelon form** * Needed algebra to finish solution. * Solution 2: $\left[\begin{smallmatrix}1&0&0&9\\0&1&0&-1\\0&0&1&-3\end{smallmatrix}\right]$ * Staircase with zeros **above** 1s on steps (and below). * Called **reduced row echelon form** * No extra algebra needed to finish solution. ===== Row echelon form and reduced row echelon form ===== ==== Definition: zero row ==== {{page>zero row}} ==== Definition: leading entry ==== {{page>leading entry}} ==== Row echelon form (REF) ==== A matrix is in **row echelon form**, or **REF**, if: - the [[zero rows]] of the matrix (if any) are all at the bottom of the matrix; and - in every non-zero row of the matrix, the [[leading entry]] is $1$; and - as you go down the rows, the leading entries go to the right. * $\left[\begin{smallmatrix} 1&2&3&4&5\\0&1&2&3&4\\0&0&1&2&3\end{smallmatrix}\right]$ $\left[\begin{smallmatrix} 1&2&3&4&5\\0&1&2&3&4\\0&0&1&2&3\\0&0&0&0&0\end{smallmatrix}\right]$ $\left[\begin{smallmatrix} 1&2&3&4&5\\0&0&0&0&0\\0&0&1&2&3\end{smallmatrix}\right]$ $\left[\begin{smallmatrix} 1&2&3&4&5\\0&0&0&0&0\\0&0&1&2&3\\0&0&0&0&0\end{smallmatrix}\right]$ $\left[\begin{smallmatrix} 1&2&3&4&5\\0&2&3&4&1\\0&0&1&2&3\end{smallmatrix}\right]$ $\left[\begin{smallmatrix} 0&1&2&3&4\\1&2&3&4&5\\0&0&1&2&3\end{smallmatrix}\right]$ $\left[\begin{smallmatrix} 1&2&3&4&5\\1&5&4&3&2\\0&1&2&3&4\end{smallmatrix}\right]$ * Which are in REF? ==== Reduced row echelon form (RREF) ==== A matrix is in **reduced row echelon form** or **RREF** if it is in [[row echelon form]] (REF) and also has the property: