~~REVEAL~~ ==== Another look at the last example ==== * $\begin{array}{ccccccrrr} x&+&3y&+&z&=&5&\quad&(1)\\ 2x&+&7y&+&4z&=&17&&(2)\end{array}$ * Find solutions of this [[system of linear equations|system]] by applying operations * Aim to end up with a very simple sort of system where we can see the solutions easily. ==== ==== * $\begin{array}{ccccccrrr} x&+&3y&+&z&=&5&\quad&(1)\\ 2x&+&7y&+&4z&=&17&&(2)\end{array}$ * Replace equation (2) with $(2)-2\times (1)$: * $\begin{array}{ccccccrrr} x&+&3y&+&z&=&5&\quad&(1)\\ &&y&+&2z&=&7&&(2)\end{array}$ * Now replace equation (1) with $(1)-3\times (2)$ * $\begin{array}{ccccccrrr} x&&&-&5z&=&-16&\quad&(1)\\ &&y&+&2z&=&7&&(2)\end{array}$ ==== ==== * $\begin{array}{ccccccrrr} x&&&-&5z&=&-16&\quad&(1)\\ &&y&+&2z&=&7&&(2)\end{array}$ * can easily rearrange (1) to find $x$ in terms of $z$ * can easily rearrange (2) to find $y$ in terms of $z$ * Since $z$ can take any value, write $z=t$ where $t$ is a "free parameter" * (which means $t$ can be any real number, or $t\in \mathbb{R}$). * Solution: \begin{align*} x&=-16+5t\\ y&=7-2t\\ z&=t,\qquad t\in \mathbb{R}\end{align*} ==== ==== * Solution: \begin{align*} x&=-16+5t\\ y&=7-2t\\ z&=t,\qquad t\in \mathbb{R}\end{align*} * Can also write this in "vector form": * $\begin{bmatrix} x\\y\\z\end{bmatrix}=\begin{bmatrix} -16\\7\\0\end{bmatrix}+t\begin{bmatrix} 5\\-2\\1\end{bmatrix},\qquad t\in \mathbb{R}.$ * This is the equation of the line where the two planes described by the original equations intersect. ==== ==== * $\begin{bmatrix} x\\y\\z\end{bmatrix}=\begin{bmatrix} -16\\7\\0\end{bmatrix}+t\begin{bmatrix} 5\\-2\\1\end{bmatrix},\qquad t\in \mathbb{R}$ * For each value of $t$, we get a different solution (a different point on the line of intersection). * e.g. take $t=0$ to see that $(-16,7,0)$ is a solution * take $t=1.5$ to see that $(-16+1.5\times 5,7+1.5\times (-2),1.5) = (-8.5,4,1.5)$ is another solution * etc. * This works for any value $t\in\mathbb{R}$, and every solution may be written in this way. ==== Observations ==== - The operations we applied to the original linear system don't change the set of solutions. This is because each operation is reversible. - Writing out the variables $x,y,z$ each time is unnecessary: * erase the variables from the system $$\begin{array}{ccccccrrr} x&+&3y&+&z&=&5&\quad&(1)\\ 2x&+&7y&+&4z&=&17&&(2)\end{array}$$ * write all the numbers in a grid, or a **matrix** * we get $\begin{bmatrix} 1&3&1&5\\2&7&4&17\end{bmatrix}$ ==== ==== * System of linear equations: $\begin{array}{ccccccrrr} x&+&3y&+&z&=&5&\quad&(1)\\ 2x&+&7y&+&4z&=&17&&(2)\end{array}$ * $\begin{bmatrix} 1&3&1&5\\2&7&4&17\end{bmatrix}$ is called the **augmented matrix** of this linear system * Each **row** corresponds to one **equation**. * Each **column** corresponds to one **variable** * (except the last column, which has the right-hand-sides of the equations) * Instead of performing operations on equations, **we can perform operations on the rows of this matrix**. ==== ==== \begin{align*} \begin{bmatrix} 1&3&1&5\\2&7&4&17\end{bmatrix} &\xrightarrow{R2\to R2-2\times R1} \begin{bmatrix} 1&3&1&5\\0&1&2&7\end{bmatrix} \\[6pt]&\xrightarrow{R1\to R1-3\times R1} \begin{bmatrix} 1&0&-5&-16\\0&1&2&7\end{bmatrix} \end{align*} * Translate back into equations and solve: * $\begin{array}{ccccccrrr} x&&&-&5z&=&-16&\quad&(1)\\ &&y&+&2z&=&7&&(2)\end{array}$ * $\begin{bmatrix} x\\y\\z\end{bmatrix}=\begin{bmatrix} -16\\7\\0\end{bmatrix}+t\begin{bmatrix} 5\\-2\\1\end{bmatrix},\qquad t\in \mathbb{R}.$ ==== ==== This method always works: * take any system of linear equations * write down a corresponding matrix (the **augmented matrix**) * perform reversible operations on the rows of this matrix to get a "nicer" matrix * write down a new system of linear equations with the same solutions as the original system. * Hopefully the new system will be easy to solve... * and the solutions haven't changed, so we'll have solved the original system! ===== The augmented matrix and elementary operations ===== ==== Definition ==== {{page>augmented matrix}} The numbers in this matrix are called its **entries**. ==== Example ==== * Find the augmented matrix of the linear system\begin{align*}3x+4y+7z&=2\\x+3z&=0\\y-2z&=5\end{align*} * We can rewrite it as \begin{align*}3x+4y+7z&=2\\{\color{red}1}x+{\color{red}0y}+3z&=0\\{\color{red}0x}+{\color{red}1}y-2z&=5\end{align*} * So the augmented matrix is\[ \begin{bmatrix} 3&4&7&2\\1&0&3&0\\0&1&-2&5\end{bmatrix}.\] ==== Elementary operations on a system of linear equations ==== {{page>elementary operations on a linear system for slides}} ==== Why do elementary operations leave the solutions of systems unchanged? ==== * We do the same thing to the left hand side and the right hand side of each equation... * so any solution to the original system will also be a solution to the new system. * These operations are all reversible (using operations of the same type)... * so any solution to the new system will also be a solution to the original system. ==== Elementary row operations on a matrix ==== {{page>elementary row operation for slides}} ==== Example ==== Use [[EROs]] to find the intersection of the planes \begin{align*} 3x+4y+7z&=2\\x+3z&=0\\y-2z&=5\end{align*} ==== Solution 1 ==== \begin{align*} \def\go#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]} \def\ar#1{\\\xrightarrow{#1}&} &\go{3&4&7&2}{1&0&3&0}{0&1&-2&5} \ar{\text{reorder rows}}\go{1&0&3&0}{0&1&-2&5}{3&4&7&2} \ar{R3\to R3-3R1}\go{1&0&3&0}{0&1&-2&5}{0&4&-2&2} \ar{R3\to R3-4R2}\go{1&0&3&0}{0&1&-2&5}{0&0&6&-18} \ar{R3\to \tfrac16 R3}\go{1&0&3&0}{0&1&-2&5}{0&0&1&-3} \end{align*} ==== ==== $\go{1&0&3&0}{0&1&-2&5}{0&0&1&-3}$ * from the last row, we get $z=-3$ * from the second row, we get $y-2z=5$ * so $y-2(-3)=5$ * so $y=-1$ * from the first row, we get $x+3z=0$ * so $x+3(-3)=0$ * so $x=9$ * Conclusion: $\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}9\\-1\\-3\end{bmatrix}$ is the only solution. ==== Solution 2 ==== We start in the same way, but by performing more [[EROs]] we make the algebra at the end simpler. \begin{align*} \def\go#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]} \def\ar#1{\\\xrightarrow{#1}&} &\go{3&4&7&2}{1&0&3&0}{0&1&-2&5} \ar{\ldots \text{same EROs as above}\ldots}\go{1&0&3&0}{0&1&-2&5}{0&0&1&-3} \ar{R2\to R2+2R3}\go{1&0&3&0}{0&1&0&-1}{0&0&1&-3} \ar{R1\to R1-3R3}\go{1&0&0&9}{0&1&0&-1}{0&0&1&-3} \end{align*} ==== ==== \[ \go{1&0&0&9}{0&1&0&-1}{0&0&1&-3}\] * from the last row, we get $z=-3$ * from the second row, we get $y=-1$ * from the first row, we get $x=9$ * So $\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}9\\-1\\-3\end{bmatrix}$ is the only solution. ==== Discussion ==== Both solutions use EROs to transform the [[augmented matrix]]. * Solution 1: $\left[\begin{smallmatrix}1&0&3&0\\0&1&-2&5\\0&0&1&-3\end{smallmatrix}\right]$. * "Staircase pattern": 1s on "steps", zeros below steps * Called **row echelon form** * Needed algebra to finish solution. * Solution 2: $\left[\begin{smallmatrix}1&0&0&9\\0&1&0&-1\\0&0&1&-3\end{smallmatrix}\right]$ * Staircase with zeros **above** 1s on steps (and below). * Called **reduced row echelon form** * No extra algebra needed to finish solution.