~~REVEAL~~ ====== The distance to a plane ====== ===== Distance from $A$ to $\Pi$ ===== * $\def\dist{\text{dist}}\def\cp#1#2#3#4#5#6{\left|\begin{smallmatrix}\vec\imath&\vec\jmath&\vec k\\#1\\#4\end{smallmatrix}\right|}\def\nn{\vec n}\def\c#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]}\def\uu{\vec u}\def\vv{\vec v}\def\ww{\vec w}\def\bR{\mathbb R}\def\rt{\bR^3}A$: any point in $\def\rt{\mathbb R^3}\rt$. $\Pi$: a plane with normal vector $\nn$. * $\nn$ is direction of shortest path from $A$ to $\Pi$ * Let $B$ be any point in the plane $\Pi$.{{ :dpp.jpg?nolink&600 |}} * (shortest) distance from $A$ to $\Pi$ is $\text{dist}(A,\Pi)=\|\def\pp{\vec p}\pp\|$ * where $\pp=\text{proj}_{\nn}{\vec{AB}}$. * Do some algebra: we get $\text{dist}(A,\Pi)=\frac{|\nn\cdot\vec{AB}|}{\|\nn\|}$. ==== Example ==== Find the distance from $A=(1,-4,3)$ to the plane $\Pi:2x-3y+6z=1$. * choose any point $B$ in $\Pi$, e.g. $B=(2,1,0)$ * $\nn=\c2{-3}6$ and $\vec{AB}=\c15{-3}$ * So $\def\dist{\text{dist}}\dist(A,\Pi)=\frac{|\nn\cdot\vec{AB}|}{\|\nn\|}=\frac{|2(1)+(-3)5+6(-3)|}{\sqrt{2^2+(-3)^2+6^2}}=\frac{|-31|}{\sqrt{49}}=\frac{31}7$. ==== The distance from the origin to a plane ==== * We write $0=(0,0,0)$ for the origin in $\rt$ * Distance from $0$ to a plane $\Pi:ax+by+cz=d$ ? * Take $B=(d/a,0,0)$ (assuming that $a\ne 0$) * We get $\dist(0,\Pi)=\frac{|d|}{\|\nn\|}$ where $\nn$ is the normal vector $\nn=\c abc$. * In particular, if $\nn$ is a unit vector, then $\dist(0,\Pi)=|d|$. * As $d$ varies (with $\nn$ fixed), we obtain parallel planes at different distances to the origin $0$ * The larger $d$ is, the further the plane is from $0$. ===== The distance between planes ===== * Let $\Pi_1$ and $\Pi_2$ be two planes. What is the (shortest) distance between them? * If they're not parallel, they intersect! So $\dist(\Pi_1,\Pi_2)=0$. * If they're parallel, then $\dist(\Pi_1,\Pi_2)=\dist(A,\Pi_2)$ for any point $A$ in $\Pi_1$. * Why? * Since the planes are parallel, $\dist(A,\Pi_2)$ doesn't change if $A$ changes in $\Pi_1$ * So this is also the shortest distance, for any choice of $A$ in $\Pi_1$ ==== Example ==== What is the distance between the planes $3x+4y-2z=5$ and $3x+4y-3z=1$? * The normal vectors are $\c34{-2}$ and $\c34{-3}$ * They aren't scalar multiples of one another * So they're they are in different directions * So the planes are not parallel. * So they intersect, and the distance is $0$. ==== Example ==== Find the distance between the planes $\Pi_1:3x+4y-2z=5$ and $\Pi_2:3x+4y-2z=1$. * Same normal vector $\nn=\c34{-2}$, so parallel planes. * Distance is $\dist(A,\Pi_2)$ where $A$ is any point in $\Pi_1$ * To find this we also need a point $B$ in $\Pi_2$. * Choose $A=(1,0,-1)$, $B=(1,0,1)$. * $\vec {AB}=\c002$ so $\dist(A,\Pi_2) = \frac{|\nn\cdot \vec{AB}|}{\|n\|}=\frac{|0+0+(-2)2|}{\sqrt{3^2+4^2+(-2)^2}} = \frac4{\sqrt{29}}.$ ==== Exercise: a formula for the distance between parallel planes ==== Show that the distance between the parallel planes $\Pi_1:ax+by+cz=d_1$ and $\Pi_2:ax+by+cz=d_2$ is \[\dist(\Pi_1,\Pi_2)=\frac{|d_2-d_1|}{\|\nn\|},\] where $\nn=\c abc$. * Important: need equations with the same left hand side. ==== Example ==== What is the distance between $x+3y-5z=4$ and $2x+6y-10z=11$? * Rewrite the second equation as $x+3y-5z=11/2$ * So the planes are parallel, with common normal vector $\nn=\c13{-5}$. * By the formula, the distance is $\frac{|\tfrac{11}2-4|}{\|\nn\|} = \frac{|\tfrac 32|}{\sqrt{1^2+3^2+(-5)^2}} = \frac3{2\sqrt{35}}$. ====== Lines in $\mathbb{R}^3$ ====== ==== ==== A line $L$ in $\rt$ has an equation of the form \[ L: \c xyz=\c abc+t\c def, \quad t\in \mathbb R\] where $a,b,c,d,e,f$ are fixed numbers. * Called a parametric equation * because of the variable $t$: a free parameter * What do $a,b,c,d,e,f$ mean? * Set $t=0$: $A=(a,b,c)$ is a point in $L$ * Set $t=1$: $B=(a+d,b+e,c+f)$ is another * So $\vec {AB}=\c def$ is a direction along $L$. ==== Example ==== Find the parametric equation of the line $L$ in $\rt$ which passes through $A=(2,1,-3)$ and $B=(4,-1,5)$. * Note that $\vec{AB}=\c 2{-2}{8}$ * So this is a direction vector along the line $L$ * So the equation is $ L: \c xyz=\c 21{-3}+t\c 2{-2}8,\quad t\in \mathbb{R}$. * (Same as $ L: \c xyz=\c 4{-1}5+t\c 2{-2}8,\quad t\in \mathbb{R}$). ===== The distance from a point to a line ===== ==== ==== How can we find $d=\text{dist}(B,L)$, the distance from the point $B$ to a line $L$? * Let $A$ be a point on $L$ * Let $\def\vv{\vec v}\vv$ be a direction vector along $L$. * {{ :dl.jpg?nolink&600 |}} * $\text{dist}(B,L) =\|\vec{AB}\|\,\sin \theta = \frac{\|\vec{AB}\|\,\|\vv\|\sin \theta}{\|\vv\|} = \frac{\|\vec{AB}\times \vv\|}{\|\vv\|}$. ==== Example ==== Find the distance from the point $B=(1,2,3)$ to the line \[L:\c xyz=\c10{-1}+t\c41{-5},\quad t\in\mathbb{R}.\] * Choose $A=\c10{-1}$, in $L$, and $\vv=\c41{-5}$, along $L$ * $\vec{AB}=\c024$, so $ \vec{AB}\times \vv = \cp02441{-5}=\c{-14}{16}{-8}=2\c{-7}{8}{-4}$ * So $\def\dist{\text{dist}}\dist(B,L)=\frac{\|\vec{AB}\times\vv\|}{\|\vv\|}=\frac{2\sqrt{7^2+8^2+4^2}}{\sqrt{4^2+1^2+5^2}} = \frac{2\sqrt{129}}{\sqrt{42}} \approx 3.5051.$ ==== Alternative formula ==== * $\dist(B,L)=\tfrac{\|\vec{AB}\times \vv\|}{\|\vv\|}$ only works in $\rt$ * because the cross product is only defined in $\rt$ * {{ :dl2.jpg?nolink&400 |}} * $\def\pp{\vec p}\dist(B,L)=\|\nn\|=\|\vec{AB}-\pp\|$ * where $\pp=\def\proj{\text{proj}}\proj_{\vv}\vec{AB}$. * This works in $\bR^n$ for any $n$ ==== Example, again ==== Find the $\dist(B,L)$ for $B=(1,2,3)$ and $L:\c xyz=\c10{-1}+t\c41{-5},\quad t\in\mathbb{R}$. * $\vec{AB}=\c024$ and $\vv=\c41{-5}$ * $\pp=\proj_{\vv}\vec{AB} = \left(\frac{\vec{AB}\cdot \vv}{\|\vv\|^2}\right)\vv = \frac{-18}{42}\c41{-5}= -\frac{3}{7}\c41{-5}$ * $\nn=\vec{AB}-\pp=\c024-(-\frac37)\c41{-5}=\frac17\c{12}{17}{13}$ * $\dist(B,L)=\|\nn\|=\frac17\sqrt{12^2+17^2+13^2} \approx 3.5051$.