~~REVEAL~~ ===== Recap: $2\times 2$ inverses ===== * Let $A=\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}\mat{a&b\\c&d}$ * $\det(A)=ad-bc$ (a number) * $A$ is invertible if and only if $\det(A)\ne 0$ * and we then have $A^{-1}=\frac1{\det(A)}\mat{d&-b\\-c&a}$ ==== Using the inverse to solve a matrix equation ==== * Solve $\mat{1&5\\3&-2}X=\mat{4&1&0\\0&2&1}$ for $X$ * Reminder: if $A$ invertible, solution to $AX=B$ is $X=A^{-1}B$ * Write $A=\mat{1&5\\3&-2}$ * $\det(A)=1(-2)-5(3)=-2-15=-17$ * So $A$ is invertible, and $A^{-1}=-\frac1{17}\mat{-2&-5\\-3&1}$ * Solution is $X=A^{-1}\mat{4&1&0\\0&2&1}=-\frac1{17}\mat{-2&-5\\-3&1}\mat{4&1&0\\0&2&1}$ * $X=\frac1{17}\mat{8&12&5\\12&1&-1}$ ===== The transpose of a matrix ===== {{page>transpose}} ==== Simple properties of the transpose ==== * $(A^T)^T=A$; and * $(A+B)^T=A^T+B^T$ if $A$ and $B$ are matrices of the [[same size]]; and * $(cA)^T=c(A^T)$ for any [[scalar]] $c$. ==== Lemma: transposes and row-column multiplication ==== If $a$ is a $1\times m$ row vector and $b$ is an $m\times 1$ column vector, then \[ ab=b^Ta^T.\] * Proof is a calculation (see Tutorial worksheet 4) ==== Observation: the transpose swaps rows with columns ==== Formally, for any matrix $A$ and any $i,j$, we have \begin{align*}\def\col#1{\text{col}_{#1}}\def\row#1{\text{row}_{#1}} \row i(A^T)&=\col i(A)^T\\\col j(A^T)&=\row j(A)^T .\end{align*} ==== Theorem: the transpose reverses the order of matrix multiplication ==== If $A$, $B$ are matrices and the [[matrix product]] $AB$ is defined, then $B^TA^T$ is also defined, and $(AB)^T=B^TA^T$. === Proof === * $A$ is $n\times m$ and $B$ is $m\times k$ for some $n,m,k$ * $AB$ is an $n\times k$ matrix, so $(AB)^T$ is $k\times n$. * $B^T$ is $k\times m$ and $A^T$ is $m\times n$ * So $B^TA^T$ is defined, and is $k\times n$. * So $(AB)^T$ and $B^TA^T$ have the same sizes. * To show that $(AB)^T=B^TA^T$, we have to check their entries all agree. ==== ==== * $(i,j)$ entry of $(AB)^T$ * =$(j,i)$ entry of $AB$ * = $\row j(A)\cdot\col i(B)$ * = $\col i(B)^T\cdot \row j(A)^T$ since $ab=b^Ta^T$ for row-col multiplication * = $\row i(B^T)\cdot \col j(A^T)$ by the Observation about transposes * = the $(i,j)$ entry of $B^TA^T$. * Hence $(AB)^T$ and $B^TA^T$ have the same sizes and the same entries * So $(AB)^T=B^TA^T$. ■ ====== $n\times n$ determinants ====== For $A$: $n\times n$ we'll define a number $\det(A)$ so that \[ A\text{ is invertible} \iff \det(A)\ne0.\] - If $A=[a]$ is a $1\times 1$ matrix, then $\det[a]=a$. - If $A=\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}\mat{a&b\\c&d}$ is a $2\times2$ matrix, then $\det(A)=ad-bc$. - If $A=\mat{a&b&c\\d&e&f\\g&h&i}$ is a $3\times 3$ matrix, then it turns out that $\det(A)=aei-afh+bfg-bdi+cdh-ceg$. - If $A$ is $4\times 4$, the formula for $\det(A)$ has $24$ terms. - If $A$ is $5\times 5$, the formula for $\det(A)$ has $120$ terms. - etc ==== ==== * To understand $n\times n$ determinants, we'll use several steps: - Define the minors of a matrix - Use minors to define the cofactors of a matrix - Use cofactors to find the determinant of a $3\times 3$ matrix - Use cofactors to find the determinant of an $n\times n$ matrix * After that: some other ways to calculate the determinant ==== Step 1: minors ==== {{page>minor}} * Short version: to find $M_{ij}$: delete the row and col containing $(i,j)$ entry, then take determinant. ==== Examples of minors (1) ==== Short version: to find $M_{ij}$: delete the row and col containing $(i,j)$ entry, then take determinant. Example: for $A=\mat{3&5\\-4&7}$: * $M_{11}=\det[7]=7$ * $M_{12}=\det[-4]=-4$ * $M_{21}=5$ * $M_{22}=3$. ==== Examples of minors (2) ==== Short version: to find $M_{ij}$: delete the row and col containing $(i,j)$ entry, then take determinant. Example: for $A=\mat{1&2&3\\7&8&9\\11&12&13}$: * $M_{23}=\det\mat{1&2\\11&12}=1\cdot 12-2\cdot 11=-10$ * $M_{32}=\det\mat{1&3\\7&9}=-12$ * etc ==== Step 2: cofactors ==== {{page>cofactor}} Note that $(-1)^{i+j}$ is $+1$ or $-1$, and can looked up in the matrix of signs: $\mat{+&-&+&-&\dots\\-&+&-&+&\dots\\+&-&+&-&\dots\\\vdots&\vdots&\vdots&\vdots&\ddots}$. This matrix starts with a $+$ in the $(1,1)$ entry (corresponding to $(-1)^{1+1}=(-1)^2=+1$) and the signs then alternate. * Short version: minors with some sign changes (according to matrix of signs). ====Examples of cofactors (1)==== Short version: minors with sign changes $\mat{+&-&+&-&\dots\\-&+&-&+&\dots\\+&-&+&-&\dots\\\vdots&\vdots&\vdots&\vdots&\ddots}$ If $A=\mat{3&5\\-4&7}$, then * $C_{11}=+M_{11}=\det[7]=7$ * $C_{12}=-M_{12}=-\det[-4]=4$ * $C_{21}=-5$, and $C_{22}=3$. ====Examples of cofactors (2)==== Short version: minors with sign changes $\mat{+&-&+&-&\dots\\-&+&-&+&\dots\\+&-&+&-&\dots\\\vdots&\vdots&\vdots&\vdots&\ddots}$ If $A=\mat{1&2&3\\7&8&9\\11&12&13}$, then * $C_{23}=-M_{23}=-(-10)=10$ * $C_{33}=+M_{33}=\det\mat{1&2\\7&8}=-6$ * etc ==== Step 3: the determinant of a $3\times 3$ matrix ==== If $A=\mat{a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}}$ is a $3\times 3$ matrix, then \[\det A=a_{11}C_{11}+a_{12}C_{12}+a_{13}C_{13}.\] Here $C_{ij}$ are the [[cofactors]] of $A$. * This formula is called **Laplace expansion of $\det A$ along the first row** * Short version: sum along first row of (entries $\times$ cofactors) ==== Example ==== Short version: sum along first row of (entries $\times$ cofactors) * $\det\mat{1&2&3\\7&8&9\\11&12&13}$ * = $1\cdot C_{11} + 2 C_{12} + 3 C_{13}$ * = $M_{11} - 2 M_{12} + 3 M_{13}$ * = $\det\mat{8&9\\12&13} -2\det\mat{7&9\\11&13} + 3\det\mat{7&8\\11&12}$ * = $-4 -2(-8)+3(-4)$ * = $0$. * (So this matrix isn't invertible!) ==== Notation ==== * Writing $\det$ all the time is annoying * Sometimes we write the entries of a matrix inside vertical bars $|\ |$ instead * e.g.\begin{align*}\def\vm#1{\left|\begin{smallmatrix}#1\end{smallmatrix}\right|}\vm{1&2&3\\7&8&9\\11&12&13} &= 1\vm{8&9\\12&13} -2\vm{7&9\\11&13} + 3\vm{7&8\\11&12}\\ &=-4 -2(-8)+3(-4)\\ &=0.\end{align*} ==== Step 4: the determinant of an $n\times n$ matrix ==== If $A$ is an $n\times n$ matrix, then \[\det A=a_{11}C_{11}+a_{12}C_{12}+\dots+a_{1n}C_{1n}.\] Here $C_{ij}$ are the [[cofactors]] of $A$. * Called **Laplace expansion of $\det A$ along the first row** since $a_{11}, a_{12},\dots,a_{1n}$ make up the first row of $A$ * Short version: sum along first row of (entries $\times$ cofactors) ==== Example ==== \begin{align*} \def\vm#1{\left|\begin{smallmatrix}#1\end{smallmatrix}\right|} \vm{\color{red}1&\color{red}0&\color{red}2&\color{red}3\\0&2&1&-1\\2&0&0&1\\3&0&4&2} &= \color{red}1\vm{\color{blue}2&\color{blue}1&\color{blue}-1\\0&0&1\\0&4&2}-\color{red}0\vm{0&1&-1\\2&0&1\\3&4&2}+\color{red}2\vm{\color{orange}0&\color{orange}2&\color{orange}{-1}\\2&0&1\\3&0&2}-\color{red}3\vm{\color{purple}0&\color{purple}2&\color{purple}1\\2&0&0\\3&0&4} \\&= 1\left(\color{blue}2\vm{0&1\\4&2}-\color{blue}1\vm{0&1\\0&2}\color{blue}{-1}\vm{0&0\\0&4}\right) \\&\quad -0+2\left(\color{orange}0-\color{orange}{2}\vm{2&1\\3&2}\color{orange}{-1}\vm{2&0\\3&0}\right) \\&\quad -3\left(\color{purple}0-\color{purple}2\vm{2&0\\3&4}+\color{purple}1\vm{2&0\\3&0}\right) \\&=1(2(-4)-0-0)+2(-2(1)-0)-3(-2(8)+0) \\&=-8-4+48\\ &=36. \end{align*}