~~REVEAL~~ ==== Last time ==== * An $n\times n $ matrix $A$ is [[invertible]] if there is a matrix $C$ solving the matrix equations $AC=I_n$ and $CA=I_n$. We then say $C$ is an [[inverse]] of $A$. * e.g. $\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}\mat{2&4\\0&1}$ is invertible, with inverse $C=\mat{0.5&-2\\0&1}$ * if $[a]$ is $1\times 1$ and $a\ne 0$, then $C=[\tfrac 1a]$ is an inverse * $I_n$ is its own inverse for any $n$ * $0_{n\times n}$, $\mat{1&0\\0&0}$ and $\mat{1&2\\-3&-6}$ aren't invertible ==== Proposition: uniqueness of the inverse ==== If $A$ is an invertible $n\times n$ matrix, then $A$ has a //unique// inverse. === Proof === * $A$ invertible, so $A$ has at least one inverse. * Suppose it has two inverses, say $C$ and $D$. * Then $AC=I_n=CA$ and $AD=I_n=DA$. * So $C=CI_n=C(AD)=(CA)D=I_nD=D$ * So $C=D$. * So any two inverses of $A$ are equal. * So $A$ has a unique inverse.■ ==== Definition/notation: $A^{-1}$ ==== {{page>the inverse}} ==== Examples again ==== * $A=\mat{2&4\\0&1}$ is invertible, and $A^{-1}=\mat{\tfrac12&-2\\0&1}$. * i.e. $\mat{2&4\\0&1}^{-1}=\mat{\tfrac12&-2\\0&1}$ * if $a$ is a non-zero scalar, then $[a]^{-1}=[\tfrac 1a]$ * $I_n^{-1}=I_n$ for any $n$ * $0_{n\times n}^{-1}$, $\mat{1&0\\0&0}^{-1}$ and $\mat{1&2\\-3&-6}^{-1}$ **do not exist** * because these matrices aren't invertible ==== Warning ==== If $A$, $B$ are matrices, never write down $\frac AB$. It doesn't make (unambiguous) sense! * $\frac AB$ is ambiguous, or not well defined: * it could mean $B^{-1}A$ * or equally well it could mean $AB^{-1}$ * and these are usually different because matrix multiplication isn't commutative! * In particular, $A^{-1}$ definitely doesn't mean $\frac 1A$. Never write this either! ==== Proposition: solving $AX=B$ when $A$ is invertible ==== If $A$ is an invertible $n\times n$ matrix and $B$ is an $n\times k$ matrix, then $ AX=B$ has a unique solution: $X=A^{-1}B$. === Proof === * First check that $X=A^{-1}B$ really is a solution: * $AX=A(A^{-1}B)=(AA^{-1})B=I_nB=B$ :-) * Uniqueness: suppose $X$ and $Y$ are both solutions * Then $AX=B$ and $AY=B$, so $AX=AY$. * Multiply both sides on the left by $A^{-1}$: * $A^{-1}AX=A^{-1}AY$, or $I_nX=I_n Y$, or $X=Y$. * So any two solutions are equal.■ ==== ==== * Easy to remember how to solve $AX=B$ * Multiply both sides (on the left) by $A^{-1}$ * reason: want to "cancel $A$" on the left hand side * so we just end up with $X=...$ * Example: Solve $\mat{2&4\\0&1}X=\mat{1\\3}$ * Know $\mat{2&4\\0&1}^{-1}=\mat{0.5&-2\\0&1}$ * Solution: $X=\mat{2&4\\0&1}^{-1}\mat{1\\3}=\mat{0.5&-2\\0&1}\mat{1\\3}=\mat{-5.5\\3}$ * Check: $\mat{2&4\\0&1}X = \mat{2&4\\0&1}\mat{-5.5\\3}=\mat{1\\3}$ :-) ==== Corollary ==== If $A$ is an $n\times n$ matrix and there is a non-zero $n\times m$ matrix $K$ so that $AK=0_{n\times m}$, then $A$ is not invertible. === Proof === * $AX=0_{n\times m}$ has (at least) two solutions: * $X=K$, * and $X=0_{n\times m}$ * So there is not a unique solution to $AX=B$, for $B$ the zero matrix * If $A$ was invertible, this would contradict the uniqueness statement of the last Proposition. * So $A$ cannot be invertible. ■ ==== Example ==== * Let $A=\mat{1&2\\-3&-6}$. $A$ isn't invertible... why? * One column of $A$ is $2$ times the other... exploit this. * Let $K=\mat{-2\\1}$ * $K$ is non-zero but $AK=\mat{1&2\\-3&-6}\mat{-2\\1}=\mat{0\\0}=0_{2\times 1}$ * So $A$ is not invertible, by the Corollary. ==== Example ==== * $A=\mat{1&4&5\\2&5&7\\3&6&9}$ is not invertible * $X=\mat{1\\1\\-1}$ is non-zero * and $AX=0_{3\times 1}$. ===== $2\times 2$ matrices: determinants and invertibility ===== ==== Question ==== Which $2\times 2$ matrices are invertible? For the invertible matrices, can we find their inverse? ==== Lemma ==== If $A=\mat{a&b\\c&d}$ and $J=\mat{d&-b\\-c&a}$, then we have \[ AJ=(ad-bc) I_2=JA.\] * Proof is an easy calculation! * Note that $(ad-bc) I_2=(ad-bc)\mat{1&0\\0&1}=\mat{ad-bc&0\\0&ad-bc}$ * Now just show that $AJ$ and $JA$ both give the same matrix (exercise). ==== Definition: the determinant of a $2\times 2$ matrix ==== {{page>determinant of a 2x2 matrix}} ==== Theorem: the determinant determines the invertibility (and inverse) of a $2\times 2$ matrix ==== Let $A=\mat{a&b\\c&d}$ be a $2\times 2$ matrix. - $A$ is invertible if and only if $\det(A)\ne0$. - If $A$ is invertible, then $A^{-1}=\frac{1}{\det(A)}\mat{d&-b\\-c&a}$. ==== Proof ==== * Let $J=\mat{d&-b\\-c&a}$, so $AJ=\det(A) I_2=JA$ (Lemma). If $\det(A)\ne 0$: * Multiply by $\frac1{\det(A)}$: $\quad A(\tfrac1{\det(A)}J)=I_2=(\tfrac1{\det(A)}J) A$ * So $A$ invertible with $A^{-1}=\frac1{\det(A)}J=\frac1{\det(A)}\mat{d&-b\\-c&a}$. If $\det(A)=0$: * $AJ=0_{2\times 2}$ * If $J\ne 0_{2\times 2}$ then (by corollary) $A$ isn't invertible. * If $J=0_{2\times 2}$ then $A=0_{2\times 2}$, which isn't invertible.■ ==== Using the inverse to solve a matrix equation ==== * Solve $\mat{1&5\\3&-2}X=\mat{4&1&0\\0&2&1}$ for $X$ * Write $A=\mat{1&5\\3&-2}$ * $\det(A)=1(-2)-5(3)=-2-15=-17$ * So $A$ is invertible, and $A^{-1}=-\frac1{17}\mat{-2&-5\\-3&1}$ * Solution is $X=A^{-1}\mat{4&1&0\\0&2&1}=-\frac1{17}\mat{-2&-5\\-3&1}\mat{4&1&0\\0&2&1}=\frac1{17}\mat{8&12&5\\12&1&-1}$