User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_9

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_9 [2016/02/29 10:23] – [The distributive laws] rupertlecture_9 [2017/02/21 10:02] (current) rupert
Line 28: Line 28:
 === Lemma: the distributive laws for row-column multiplication === === Lemma: the distributive laws for row-column multiplication ===
  
-  - If $a$ is a $1\times n$ row vector and $b$ and $c$ are $n\times 1$ column vectors, then $a(b+c)=ab+ac$. +  - If $a$ is a $1\times m$ row vector and $b$ and $c$ are $m\times 1$ column vectors, then $a\cdot (b+c)=a\cdot b+a\cdot c$. 
-  - If $b$ and $c$ are $1\times n$ row vectors and $a$ is an $n\times 1$ column vector, then $(b+c)a=ba+ca$.+  - If $b$ and $c$ are $1\times m$ row vectors and $a$ is an $m\times 1$ column vector, then $(b+c)\cdot a=b\cdot a+c\cdot a$.
  
 The proof is an exercise (see tutorial worksheet 5). The proof is an exercise (see tutorial worksheet 5).
Line 63: Line 63:
 2. The proof is similar, and is left as an exercise.■ 2. The proof is similar, and is left as an exercise.■
  
-===== Matrix equations ===== 
  
-We've seen that a single linear equation can be written using [[row-column multiplication]]. For example, 
-\[ 2x-3y+z=8\] 
-can be written as  
-\[ \def\m#1{\begin{bmatrix}#1\end{bmatrix}}\m{2&-3&1}\m{x\\y\\z}=8\] 
-or 
-\[ a\vec x=8\] 
-where $a=\m{2&-3&1}$ and $\vec x=\m{x\\y\\z}$. 
- 
-We can write a whole [[system of linear equations]] in a similar way, as a matrix equation using [[matrix multiplication]]. For example we can rewrite the linear system 
-\begin{align*} 2x-3y+z&=8\\ y-z&=4\\x+y+z&=0\end{align*} 
-as  
-\[ \m{2&-3&1\\0&1&-1\\1&1&1}\m{x\\y\\z}=\m{8\\4\\0},\] 
-or  
-\[ A\vec x=\vec b\] 
-where $A=\m{2&-3&1\\0&1&-1\\1&1&1}$, $\vec x=\m{x\\y\\z}$ and $\vec b=\m{8\\4\\0}$. (We are writing the little arrow above the column vectors here because otherwise we might get confused between the $\vec x$: a column vector of variables, and $x$: just a single variable). 
- 
- 
-More generally, any linear system 
-\begin{align*} a_{11}x_1+a_{12}x_2+\dots+a_{1m}x_m&=b_1\\ a_{21}x_1+a_{22}x_2+\dots+a_{2m}x_m&=b_2\\ \hphantom{a_{11}}\vdots \hphantom{x_1+a_{22}}\vdots\hphantom{x_2+\dots+{}a_{nn}} \vdots\ & \hphantom{{}={}\!} \vdots\\ a_{n1}x_1+a_{n2}x_2+\dots+a_{nm}x_m&=b_n \end{align*} 
-can be written in the form 
-\[ A\vec x=\vec b\] 
-where $A$ is the $n\times m $ matrix, called the **coefficient matrix** of the linear system, whose $(i,j)$ entry is $a_{ij}$ (the number in front of $x_j$ in the $i$th equation of the system) and $\vec x=\m{x_1\\x_2\\\vdots\\x_m}$, and $\vec b=\m{b_1\\b_2\\\vdots\\b_n}$. 
  
lecture_9.1456741391.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki