Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_8
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| lecture_8 [2016/02/18 10:17] – rupert | lecture_8 [2016/02/18 10:20] (current) – rupert | ||
|---|---|---|---|
| Line 5: | Line 5: | ||
| - If $\newcommand{\mat}[1]{\begin{bmatrix}# | - If $\newcommand{\mat}[1]{\begin{bmatrix}# | ||
| - | - If $A=\mat{1& | + | - If $A=\mat{1& |
| * $AB$, $CA$ and $BC$ don't exist (i.e., they are undefined); | * $AB$, $CA$ and $BC$ don't exist (i.e., they are undefined); | ||
| * $AC$ exists and is $3\times 4$; | * $AC$ exists and is $3\times 4$; | ||
| Line 12: | Line 12: | ||
| * In particular, $AB\ne BA$ and $AC\ne CA$ and $BC\ne CB$, since in each case one of the matrices doesn' | * In particular, $AB\ne BA$ and $AC\ne CA$ and $BC\ne CB$, since in each case one of the matrices doesn' | ||
| - If $A=\mat{0& | - If $A=\mat{0& | ||
| + | - If $A=\mat{1& | ||
| - If $A=0_{n\times n}$ is the $n\times n$ zero matrix and $B$ is any $n\times n$ matrix, then $AB=0_{n\times n}$ and $BA=0_{n\times n}$. So in this case, we do have $AB=BA$. | - If $A=0_{n\times n}$ is the $n\times n$ zero matrix and $B$ is any $n\times n$ matrix, then $AB=0_{n\times n}$ and $BA=0_{n\times n}$. So in this case, we do have $AB=BA$. | ||
| - If $A=\mat{1& | - If $A=\mat{1& | ||
| Line 54: | Line 55: | ||
| $\text{row}_i(I_n)\cdot \text{col}_j(A)$, | $\text{row}_i(I_n)\cdot \text{col}_j(A)$, | ||
| \begin{align*} [0~0~\dots~0~1~0~\dots~0]\begin{bmatrix}a_{1j}\\a_{2j}\\\vdots\\a_{nj}\end{bmatrix} &= 0a_{1j}+0a_{2j}+\dots+0a_{i-1, | \begin{align*} [0~0~\dots~0~1~0~\dots~0]\begin{bmatrix}a_{1j}\\a_{2j}\\\vdots\\a_{nj}\end{bmatrix} &= 0a_{1j}+0a_{2j}+\dots+0a_{i-1, | ||
| - | So the matrices $I_nA$ and $A$ have the same $(i,j)$ entries, for any $(i,j)$. So $I_nA=A$. | + | So the matrices $I_nA$ and $A$ have the same size, and the same $(i,j)$ entries, for any $(i,j)$. So $I_nA=A$. |
lecture_8.1455790644.txt.gz · Last modified: by rupert
