User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_7_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_7_slides [2016/02/10 14:52] rupertlecture_7_slides [2017/02/13 19:32] (current) rupert
Line 1: Line 1:
 ~~REVEAL~~ ~~REVEAL~~
 +
 +====== Chapter 2: The algebra of matrices ======
 +
 +==== ====
 +{{page>matrix}}
 +
 +{{page>(i,j) entry}}
 +
 +==== Examples ====
 +
 +  * $B=\begin{bmatrix} 99&3&5\\7&-20&14\end{bmatrix}$ is a $2\times 3$ matrix
 +    * the $(1,1)$ entry of $B$ is $b_{11}=99$
 +    * the $(1,3)$ entry of $B$ is $b_{13}=5$
 +    * the $(2,1)$ entry of $B$ is $b_{21}=7$
 +    * etc.
 +  * $(3,2)$ entry of $B$?
 +    * undefined!
 +
 +==== Examples =====
 +  * $\left[\begin{smallmatrix}3\\2\\4\\0\\-1\end{smallmatrix}\right]$ is a $5\times 1$ matrix. 
 +    * A **column vector**: matrix with just one column.
 +  * $\begin{bmatrix}3&2&4&0&-1\end{bmatrix}$ is a $1\times 5$ matrix. 
 +    * A **row vector**: matrix with just one row.
 +  * These have the same entries, but a different "shape", or "size".
 +  * They are different matrices (not equal). 
 +
 +==== Size of a matrix ====
 +
 +{{page>same size}}
 +
 +==== Equality of matrices ====
 +
 +{{page>equal matrices}}
 +
 +==== Examples ====
 +
 +  * $\begin{bmatrix}3\\2\\4\\0\\-1\end{bmatrix}\ne \begin{bmatrix}3&2&4&0&-1\end{bmatrix}$, since these matrices have different sizes: the first is $5\times 1$ but the second is $1\times 5$.
 +==== ====
 +  * $\begin{bmatrix}1\\2\end{bmatrix}\ne\begin{bmatrix}1 &0\\2&0\end{bmatrix}$ 
 +    * not the same size.
 +  * $\begin{bmatrix}1&0\\0&1\end{bmatrix}\ne \begin{bmatrix}1&0\\1&1\end{bmatrix}$ 
 +    * same size but the $(2,1)$ entries are different.
 +==== ====
 +  * If $\begin{bmatrix}3x&7y+2\\8z-3&w^2\end{bmatrix}=\begin{bmatrix}1&2z\\\sqrt2&9\end{bmatrix}$ then we know that all the corresponding entries are equal
 +  * We get four equations:\begin{align*}3x&=1\\7y+2&=2z\\8z-3&=\sqrt2\\w^2&=9\end{align*}
  
 ===== Operations on matrices ===== ===== Operations on matrices =====
Line 64: Line 109:
 ==== Row-column multiplication ==== ==== Row-column multiplication ====
  
-  * Let $a=[a_1~a_2~\dots~a_n\end{bmatrix}]$ be a $1\times n$ row vector +  * Let $a=[\begin{smallmatrix}a_1&a_2&\dots&a_n\end{smallmatrix}]$ be a $1\times n$ row vector and $b=\left[\begin{smallmatrix}b_1\\b_2\\\vdots\\b_n\end{smallmatrix}\right]$, an $n\times 1$ column vector. 
-  * and $b=\left[\begin{smallmatrix}b_1\\b_2\\\vdots\\b_n\end{smallmatrix}\right]$, an $n\times 1$ column vector. +  * The **row-column product** of $a$ and $b$ is defined by \[\!\!\!\!\!\!\!\!\!\!ab=[\begin{smallmatrix}a_1&a_2&\dots&a_n\end{smallmatrix}]\left[\begin{smallmatrix}b_1\\b_2\\\vdots\\b_n\end{smallmatrix}\right]=a_1b_1+a_2b_2+\dots+a_nb_n.\]
-  * The **row-column product** $ab$ of $a$ and $b$ is defined by \[[a_1~a_2~\dots~a_n]\left[\begin{smallmatrix}b_1\\b_2\\\vdots\\b_n\end{smallmatrix}\right]=a_1b_1+a_2b_2+\dots+a_nb_n.\]+
   * Sometimes we write $a\cdot b$ instead of $ab$.   * Sometimes we write $a\cdot b$ instead of $ab$.
   * If $a$ and $b$ have a different number of entries, $ab$ is **undefined**.   * If $a$ and $b$ have a different number of entries, $ab$ is **undefined**.
Line 75: Line 119:
   * $\left[\begin{smallmatrix}1&2&7\end{smallmatrix}\right]\left[\begin{smallmatrix}3\\-1\end{smallmatrix}\right]$ is not defined.   * $\left[\begin{smallmatrix}1&2&7\end{smallmatrix}\right]\left[\begin{smallmatrix}3\\-1\end{smallmatrix}\right]$ is not defined.
   * $\left[\begin{smallmatrix}2&3&5\end{smallmatrix}\right]\left[\begin{smallmatrix}x\\y\\z\end{smallmatrix}\right]=2x+3y+5z$.   * $\left[\begin{smallmatrix}2&3&5\end{smallmatrix}\right]\left[\begin{smallmatrix}x\\y\\z\end{smallmatrix}\right]=2x+3y+5z$.
-  * Generalising the previous example: if $a=\left[\begin{smallmatrix}a_1&a_2&\dots&a_m\end{smallmatrix}\right]$ and $x=\left[\begin{smallmatrix}x_1\\x_2\\\vdots\\x_m\end{smallmatrix}\right]$, then $ax=a_1x_1+a_2x_2+\dots+a_mx_m$. So we can write any [[linear equation]] $a_1x_1+a_2x_2+\dots+a_mx_m=b$ as a shorter matrix equation: $ax=b$.+  * If $a=\left[\begin{smallmatrix}a_1&a_2&\dots&a_m\end{smallmatrix}\right]$ and $x=\left[\begin{smallmatrix}x_1\\x_2\\\vdots\\x_m\end{smallmatrix}\right]$, then $ax=a_1x_1+a_2x_2+\dots+a_mx_m$.  
 +    * So we can write any [[linear equation]] as a shorter matrix equation: $ax=b$.
  
 ==== Matrix multiplication ==== ==== Matrix multiplication ====
  
-  * We want to define $AB$ where $A$ and $B$ are matrices of "compatible" sizes+  * We want to define $AB$ where $A$ and $B$ are matrices of "compatible" sizes (not just rows and columns)
   * This will generalise row-column multiplication   * This will generalise row-column multiplication
-  * Idea is to build the new matrix $AB$ from all possible row-column products +  * We build $AB$ from all possible row-column products 
-  * Here's an example:\[ \def\r{\left[\begin{smallmatrix}1&0&5\end{smallmatrix}\right]}\def\rr{\left[\begin{smallmatrix}2&-1&3\end{smallmatrix}\right]}\left[\begin{smallmatrix}1&0&5\\2&-1&3\end{smallmatrix}\right]\left[\begin{smallmatrix} 1&2\\3&4\\5&6\end{smallmatrix}\right]\def\s{\left[\begin{smallmatrix}1\\3\\5\end{smallmatrix}\right]}\def\ss{\left[\begin{smallmatrix}2\\4\\6\end{smallmatrix}\right]}=\left[\begin{smallmatrix}{\r\s}&{\r\ss}\\{\rr\s}&{\rr\ss}\end{smallmatrix}\right]=\left[\begin{smallmatrix}26&32\\14&18\end{smallmatrix}\right].\]+  * For example: \[\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! \def\r{\left[\begin{smallmatrix}1&0&5\end{smallmatrix}\right]}\def\rr{\left[\begin{smallmatrix}2&-1&3\end{smallmatrix}\right]}\left[\begin{smallmatrix}1&0&5\\2&-1&3\end{smallmatrix}\right]\left[\begin{smallmatrix} 1&2\\3&4\\5&6\end{smallmatrix}\right]\def\s{\left[\begin{smallmatrix}1\\3\\5\end{smallmatrix}\right]}\def\ss{\left[\begin{smallmatrix}2\\4\\6\end{smallmatrix}\right]}=\left[\begin{smallmatrix}{\r\s}&{\r\ss}\\{\rr\s}&{\rr\ss}\end{smallmatrix}\right]=\left[\begin{smallmatrix}26&32\\14&18\end{smallmatrix}\right].\]
lecture_7_slides.1455115928.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki