User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_6_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_6_slides [2017/02/06 18:16] rupertlecture_6_slides [2017/02/08 17:34] (current) rupert
Line 2: Line 2:
  
 ===== Solving linear systems. Examples; how many solutions? ===== ===== Solving linear systems. Examples; how many solutions? =====
 +
 +==== More examples ====
  
 ==== Example 1 ==== ==== Example 1 ====
 +If $ f(x)=ax^2+bx+c$ and $f(1)=3$, $f(2)=2$ and $f(3)=4$, find $f(x)$.
 +
 +  * $f(1)=3\implies a+b+c=3$
 +  * $f(2)=2\implies 4a+2b+c=2$
 +  * $f(3)=4\implies 9a+3b+c=4$
 +  * $\begin{gather*}  a+b+c=3\\4a+2b+c=2\\9a+3b+c=4\end{gather*}$ 
 +  * Solve using RREF.
 +==== ====
 +\begin{align*}\def\go#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]}
 +\def\ar#1{\\\xrightarrow{#1}&
 +\go{1&1&1&3}{4&2&1&2}{9&3&1&4}
 +\xrightarrow{R2\to R2-4R1\text{ and }R3\to R3-9R1}&
 +\go{1&1&1&3}{0&-2&-3&-10}{0&-6&-8&-23}
 +\ar{R2\to -\tfrac12 R2}
 +\go{1&1&1&3}{0&1&\tfrac32&5}{0&-6&-8&-23}
 +\ar{R3\to R3+6R2}
 +\go{1&1&1&3}{0&1&\tfrac32&5}{0&0&1&7}
 +\end{align*}
 +  * So far: in REF!
 +
 +==== ====
 +\begin{align*}
 +\go{1&1&1&3}{0&1&\tfrac32&5}{0&0&1&7}
 +\xrightarrow{R1\to R1-R3\text{ and }R2\to R2-\tfrac32R3}&
 +\go{1&1&0&-4}{0&1&0&-5.5}{0&0&1&7}
 +\ar{R1\to R1-R2}
 +\go{1&0&0&1.5}{0&1&0&-5.5}{0&0&1&7}
 +\end{align*}
 +  * So $a=1.5$, $b=-5.5$ and $c=7$
 +  * So $f(x)=1.5x^2-5.5x+7$.
 +
 +
 +==== Example 2 ====
  
 Solve the linear system Solve the linear system
Line 38: Line 73:
   * No free variables.   * No free variables.
  
-==== Example ====+==== Example ====
  
 Solve the linear system Solve the linear system
Line 66: Line 101:
   * To detect this: put in REF and find a row $[0~0~\dots~0~1]$.   * To detect this: put in REF and find a row $[0~0~\dots~0~1]$.
  
-==== Example ====+==== Example ====
  
 For which value(s) of $k$ does the following linear system have For which value(s) of $k$ does the following linear system have
lecture_6_slides.1486404962.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki