User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_6_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_6_slides [2016/02/09 12:20] rupertlecture_6_slides [2017/02/08 17:34] (current) rupert
Line 1: Line 1:
 ~~REVEAL~~ ~~REVEAL~~
 +
 +===== Solving linear systems. Examples; how many solutions? =====
 +
 +==== More examples ====
  
 ==== Example 1 ==== ==== Example 1 ====
 +If $ f(x)=ax^2+bx+c$ and $f(1)=3$, $f(2)=2$ and $f(3)=4$, find $f(x)$.
 +
 +  * $f(1)=3\implies a+b+c=3$
 +  * $f(2)=2\implies 4a+2b+c=2$
 +  * $f(3)=4\implies 9a+3b+c=4$
 +  * $\begin{gather*}  a+b+c=3\\4a+2b+c=2\\9a+3b+c=4\end{gather*}$ 
 +  * Solve using RREF.
 +==== ====
 +\begin{align*}\def\go#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]}
 +\def\ar#1{\\\xrightarrow{#1}&
 +\go{1&1&1&3}{4&2&1&2}{9&3&1&4}
 +\xrightarrow{R2\to R2-4R1\text{ and }R3\to R3-9R1}&
 +\go{1&1&1&3}{0&-2&-3&-10}{0&-6&-8&-23}
 +\ar{R2\to -\tfrac12 R2}
 +\go{1&1&1&3}{0&1&\tfrac32&5}{0&-6&-8&-23}
 +\ar{R3\to R3+6R2}
 +\go{1&1&1&3}{0&1&\tfrac32&5}{0&0&1&7}
 +\end{align*}
 +  * So far: in REF!
 +
 +==== ====
 +\begin{align*}
 +\go{1&1&1&3}{0&1&\tfrac32&5}{0&0&1&7}
 +\xrightarrow{R1\to R1-R3\text{ and }R2\to R2-\tfrac32R3}&
 +\go{1&1&0&-4}{0&1&0&-5.5}{0&0&1&7}
 +\ar{R1\to R1-R2}
 +\go{1&0&0&1.5}{0&1&0&-5.5}{0&0&1&7}
 +\end{align*}
 +  * So $a=1.5$, $b=-5.5$ and $c=7$
 +  * So $f(x)=1.5x^2-5.5x+7$.
 +
 +
 +==== Example 2 ====
  
 Solve the linear system Solve the linear system
Line 36: Line 73:
   * No free variables.   * No free variables.
  
-==== Example ====+==== Example ====
  
 Solve the linear system Solve the linear system
Line 64: Line 101:
   * To detect this: put in REF and find a row $[0~0~\dots~0~1]$.   * To detect this: put in REF and find a row $[0~0~\dots~0~1]$.
  
-==== Example ====+==== Example ====
  
 For which value(s) of $k$ does the following linear system have For which value(s) of $k$ does the following linear system have
Line 111: Line 148:
 ==== Examples ==== ==== Examples ====
  
-  * If $B=\begin{bmatrix} 99&3&5\\7&-20&14\end{bmatrix}$, then $B$ is a $2\times 3$ matrix, and the $(1,1)$ entry of $B$ is $b_{11}=99$the $(1,3)$ entry of $B$ is $b_{13}=5$the $(2,1)$ entry is $b_{21}=7$etc. +  * $B=\begin{bmatrix} 99&3&5\\7&-20&14\end{bmatrix}$ is a $2\times 3$ matrix 
-  * $\begin{bmatrix}3\\2\\4\\0\\-1\end{bmatrix}$ is a $5\times 1$ matrix. A matrix like this with one column is called a **column vector**. +    * the $(1,1)$ entry of $B$ is $b_{11}=99$ 
-  * $\begin{bmatrix}3&2&4&0&-1\end{bmatrix}$ is a $1\times 5$ matrix. A matrix like this with one row is called a **row vector**.+    * the $(1,3)$ entry of $B$ is $b_{13}=5$ 
 +    * the $(2,1)$ entry of $B$ is $b_{21}=7$ 
 +    * etc. 
 +  * $(3,2)$ entry of $B$? 
 +    * undefined! 
 +==== ===== 
 +  * $\left[\begin{smallmatrix}3\\2\\4\\0\\-1\end{smallmatrix}\right]$ is a $5\times 1$ matrix.  
 +    * A matrix like this with one column is called a **column vector**. 
 +  * $\begin{bmatrix}3&2&4&0&-1\end{bmatrix}$ is a $1\times 5$ matrix.  
 +    * A matrix like this with one row is called a **row vector**
 +  * Even though these have the same entries, they have a different "shape", or "size" and they are different matrices
  
-Even though the row matrix and the column matrix above have the same entries, they have a different "shape", or "size", so we must think of them has being different matrices. Let's give the definitions to make this precise. +==== Size of a matrix ====
- +
-=== Definition ===+
  
 {{page>same size}} {{page>same size}}
  
-=== Definition ===+==== Equality of matrices ====
  
 {{page>equal matrices}} {{page>equal matrices}}
  
-=== Examples ===+==== Examples ====
  
   * $\begin{bmatrix}3\\2\\4\\0\\-1\end{bmatrix}\ne \begin{bmatrix}3&2&4&0&-1\end{bmatrix}$, since these matrices have different sizes: the first is $5\times 1$ but the second is $1\times 5$.   * $\begin{bmatrix}3\\2\\4\\0\\-1\end{bmatrix}\ne \begin{bmatrix}3&2&4&0&-1\end{bmatrix}$, since these matrices have different sizes: the first is $5\times 1$ but the second is $1\times 5$.
-  * $\begin{bmatrix}1\\2\end{bmatrix}\ne\begin{bmatrix}1 &0\\2&0\end{bmatrix}$ since these matrices are not the same size. +==== ==== 
-  * $\begin{bmatrix}1&0\\0&1\end{bmatrix}\ne \begin{bmatrix}1&0\\1&0\end{bmatrix}$ because even though they have the same sizethe $(2,1)$ entries are different. +  * $\begin{bmatrix}1\\2\end{bmatrix}\ne\begin{bmatrix}1 &0\\2&0\end{bmatrix}$  
-  * If $\begin{bmatrix}3x&7y+2\\8z-3&w^2\end{bmatrix}=\begin{bmatrix}1&2z\\\sqrt2&9\end{bmatrix}$ then we know that all the corresponding entries are equal, so we get four equations:\begin{align*}3x&=1\\7y+2&=2z\\8z-3&=\sqrt2\\w^2&=9\end{align*}+    * not the same size. 
 +  * $\begin{bmatrix}1&0\\0&1\end{bmatrix}\ne \begin{bmatrix}1&0\\1&1\end{bmatrix}$  
 +    * same size but the $(2,1)$ entries are different. 
 +==== ==== 
 +  * If $\begin{bmatrix}3x&7y+2\\8z-3&w^2\end{bmatrix}=\begin{bmatrix}1&2z\\\sqrt2&9\end{bmatrix}$ then we know that all the corresponding entries are equal 
 +  * We get four equations:\begin{align*}3x&=1\\7y+2&=2z\\8z-3&=\sqrt2\\w^2&=9\end{align*}
lecture_6_slides.1455020410.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki