Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_6
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| lecture_6 [2016/02/09 10:52] – rupert | lecture_6 [2017/02/07 10:14] (current) – rupert | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| - | ==== Examples ==== | + | ==== Examples ==== |
| === Example 1 === | === Example 1 === | ||
| + | |||
| + | A function $f(x)$ has the form \[ f(x)=ax^2+bx+c\] where $a,b,c$ are | ||
| + | constants. Given that $f(1)=3$, $f(2)=2$ and $f(3)=4$, find $f(x)$. | ||
| + | |||
| + | == Solution == | ||
| + | |||
| + | \begin{gather*} f(1)=3\implies a\cdot 1^2+b\cdot 1 +c = 3\implies a+b+c=3\\ | ||
| + | f(2)=2\implies a\cdot 2^2+b\cdot 2 +c = 3\implies 4a+2b+c=2\\ | ||
| + | f(3)=4\implies a\cdot 3^2+b\cdot 3 +c = 3\implies 9a+3b+c=4 | ||
| + | \end{gather*} | ||
| + | |||
| + | |||
| + | We get a system of three linear equations in the variables $a,b,c$: | ||
| + | \begin{gather*} | ||
| + | | ||
| + | 4a+2b+c=2\\ | ||
| + | 9a+3b+c=4 | ||
| + | \end{gather*} | ||
| + | |||
| + | Let's reduce the augmented matrix for this system to RREF. | ||
| + | |||
| + | \begin{align*} | ||
| + | \def\go# | ||
| + | \def\ar# | ||
| + | & | ||
| + | \ar{R2\to R2-4R1\text{ and }R3\to R3-9R1} | ||
| + | \go{1& | ||
| + | \ar{R2\to -\tfrac12 R2} | ||
| + | \go{1& | ||
| + | \ar{R3\to R3+6R2} | ||
| + | \go{1& | ||
| + | \ar{R1\to R1-R3\text{ and }R2\to R2-\tfrac32R3} | ||
| + | \go{1& | ||
| + | \ar{R1\to R1-R2} | ||
| + | \go{1& | ||
| + | \end{align*} | ||
| + | So $a=1.5$, $b=-5.5$ and $c=7$; so | ||
| + | \[ f(x)=1.5x^2-5.5x+7.\] | ||
| + | |||
| + | |||
| + | === Example 2 === | ||
| Solve the linear system | Solve the linear system | ||
| Line 28: | Line 69: | ||
| - | === Example | + | === Example |
| Solve the linear system | Solve the linear system | ||
| Line 54: | Line 95: | ||
| {{page> | {{page> | ||
| - | === Example | + | === Example |
| For which value(s) of $k$ does the following linear system have | For which value(s) of $k$ does the following linear system have | ||
| Line 92: | Line 133: | ||
| $k=4$. | $k=4$. | ||
| + | /* | ||
| ==== One more example ==== | ==== One more example ==== | ||
| Line 117: | Line 159: | ||
| Now $z$ is a free variable, say $z=t$ where $t\in \mathbb{R}$, | Now $z$ is a free variable, say $z=t$ where $t\in \mathbb{R}$, | ||
| \[ \begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}0\\2\\0\end{bmatrix}+t\begin{bmatrix}0.5\\-1.5\\1\end{bmatrix}, | \[ \begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}0\\2\\0\end{bmatrix}+t\begin{bmatrix}0.5\\-1.5\\1\end{bmatrix}, | ||
| + | */ | ||
| ===== Observations about Gaussian elimination ===== | ===== Observations about Gaussian elimination ===== | ||
| Line 122: | Line 165: | ||
| {{page> | {{page> | ||
| + | ====== Chapter 2: The algebra of matrices ====== | ||
| + | |||
| + | === Definition === | ||
| + | |||
| + | {{page> | ||
| + | |||
| + | {{page> | ||
| + | |||
| + | === Example === | ||
| + | If $B=\begin{bmatrix} 99& | ||
lecture_6.1455015179.txt.gz · Last modified: by rupert
