User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_6

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_6 [2015/02/05 11:57] rupertlecture_6 [2017/02/07 10:14] (current) rupert
Line 1: Line 1:
- ==== Examples ====+==== Examples ====
  
 === Example 1 === === Example 1 ===
 +
 +A function $f(x)$ has the form \[ f(x)=ax^2+bx+c\] where $a,b,c$ are
 +constants. Given that $f(1)=3$, $f(2)=2$ and $f(3)=4$, find $f(x)$.
 +
 +== Solution ==
 +
 +\begin{gather*} f(1)=3\implies a\cdot 1^2+b\cdot 1 +c = 3\implies a+b+c=3\\
 +f(2)=2\implies a\cdot 2^2+b\cdot 2 +c = 3\implies 4a+2b+c=2\\
 +f(3)=4\implies a\cdot 3^2+b\cdot 3 +c = 3\implies 9a+3b+c=4
 +\end{gather*}
 +
 +
 +We get a system of three linear equations in the variables $a,b,c$:
 +\begin{gather*} 
 + a+b+c=3\\
 +4a+2b+c=2\\
 +9a+3b+c=4
 +\end{gather*}
 +
 +Let's reduce the augmented matrix for this system to RREF.
 +
 +\begin{align*} 
 +\def\go#1#2#3{\begin{bmatrix}#1\\#2\\#3\end{bmatrix}}
 +\def\ar#1{\\[6pt]\xrightarrow{#1}&}
 +&\go{1&1&1&3}{4&2&1&2}{9&3&1&4}
 +\ar{R2\to R2-4R1\text{ and }R3\to R3-9R1}
 +\go{1&1&1&3}{0&-2&-3&-10}{0&-6&-8&-23}
 +\ar{R2\to -\tfrac12 R2}
 +\go{1&1&1&3}{0&1&\tfrac32&5}{0&-6&-8&-23}
 +\ar{R3\to R3+6R2}
 +\go{1&1&1&3}{0&1&\tfrac32&5}{0&0&1&7}
 +\ar{R1\to R1-R3\text{ and }R2\to R2-\tfrac32R3}
 +\go{1&1&0&-4}{0&1&0&-5.5}{0&0&1&7}
 +\ar{R1\to R1-R2}
 +\go{1&0&0&1.5}{0&1&0&-5.5}{0&0&1&7}
 +\end{align*}
 +So $a=1.5$, $b=-5.5$ and $c=7$; so 
 +\[ f(x)=1.5x^2-5.5x+7.\]
 +
 +
 +=== Example 2 ===
  
 Solve the linear system Solve the linear system
Line 25: Line 66:
 \go{1&0&0&3}{0&1&0&-1}{0&0&1&2} \go{1&0&0&3}{0&1&0&-1}{0&0&1&2}
 \end{align*} \end{align*}
-The solution is $x=3$, $y=-1$, $z=2$. So there is a unique solution: just one opint in $\mathbb{R}^3$, namely $(3,-1,2)$.+The solution is $x=3$, $y=-1$, $z=2$. So there is a unique solution: just one point in $\mathbb{R}^3$, namely $(3,-1,2)$.
  
  
-=== Example ===+=== Example ===
  
 Solve the linear system Solve the linear system
-\begin{align*}3x+y-2z+4w&=5\\x+z+w&=2\\4x+2y-6z+6w=0\end{align*}+\begin{align*}3x+y-2z+4w&=5\\x+z+w&=2\\4x+2y-6z+6w&=0\end{align*}
  
 == Solution == == Solution ==
Line 41: Line 82:
 \go{1&0&1&1&2}{3&1&-2&4&5}{4&2&-6&6&0} \go{1&0&1&1&2}{3&1&-2&4&5}{4&2&-6&6&0}
 \ar{R2\to R2-3R1\text{ and }R3\to R3-4R1} \ar{R2\to R2-3R1\text{ and }R3\to R3-4R1}
-\go{1&0&1&1&2}{&0&1&-5&1&-1}{0&2&-10&2&-8}+\go{1&0&1&1&2}{0&1&-5&1&-1}{0&2&-10&2&-8}
 \ar{R3\to R3-2R2} \ar{R3\to R3-2R2}
 \go{1&0&1&1&2}{0&1&-5&1&-1}{0&0&0&0&-6} \go{1&0&1&1&2}{0&1&-5&1&-1}{0&0&0&0&-6}
Line 52: Line 93:
 which clearly has no solution! We conclude that this system has no solutions, and hence the original linear system has no solutions either. which clearly has no solution! We conclude that this system has no solutions, and hence the original linear system has no solutions either.
  
-{{p>inconsistent}}+{{page>inconsistent}} 
 + 
 +=== Example 4 === 
 + 
 +For which value(s) of $k$ does the following linear system have 
 +infinitely many solutions? 
 + 
 +\begin{gather*}x+y+z=1\\x-z=5\\2x+3y+kz=-2\end{gather*} 
 + 
 +== Solution == 
 + 
 +\begin{align*}  
 +&\go{1&1&1&1}{1&0&-1&5}{2&3&k&-2} 
 +\ar{R2\to R2-R1\text{ and }R3\to R3-2R1} 
 +\go{1&1&1&1}{0&-1&-2&4}{0&1&k-2&-4} 
 +\ar{R2\to -R2} 
 +\go{1&1&1&1}{0&1&2&-4}{0&1&k-2&-4} 
 +\ar{R3\to R3-R2} 
 +\go{1&1&1&1}{0&1&2&-4}{0&0&k-4&0} 
 +\end{align*} 
 + 
 +If $k-4=0$, then this matrix is in [[REF]]: 
 +\[\go{1&1&1&1}{0&1&2&-4}{0&0&0&0}\] In this situation, $z$ is a [[free variable]] (since there's no [[leading entry]] in the third column).  For 
 +each value of $z$ we get a different solution, so if $k-4=0$, 
 +or equivalently, if $k=4$, then there are infinitely many different 
 +solutions. 
 + 
 +If $k-4\ne0$, then we can divide the third row by $k-4$ to get the 
 +REF: \[\go{1&1&1&1}{0&1&2&-4}{0&0&1&0}\] In this situtation, there are 
 +no free variables since $x$, $y$ and $z$ are all leading variables. So 
 +if $k-4\ne 0$, or equivalently if $k\ne 4$, then there are no free 
 +variables so there is not an infinite number of solutions. (The only 
 +possibilities are that there is is a unique solution or that the 
 +system is inconsistent; and in this case you can check that there is a 
 +unique solution, although we don't need to know this to answer the 
 +question). 
 + 
 +In conclusion, the system has infinitely many solutions if and only if 
 +$k=4$. 
 + 
 +/* 
 +==== One more example ==== 
 + 
 +Solve the following [[linear system]]: 
 +\begin{align*} x+y+z&=2\\2x-z&=0\\x+3y+4z&=6\\3x+y&=2\end{align*} 
 + 
 +== Solution == 
 + 
 +We remark that there are more equations than unknowns... but this isn't a problem! We proceed as usual: 
 + 
 + 
 + 
 +\begin{align*}  
 +\def\go#1#2#3#4{\begin{bmatrix}#1\\#2\\#3\\#4\end{bmatrix}} 
 +\def\ar#1{\\[6pt]\xrightarrow{#1}&
 +&\go{1&1&1&2}{2&0&-1&0}{1&3&4&6}{3&1&0&2} 
 +\ar{R2\to R2-2R1,\ R3\to R3-R1\text{ and }R4\to R4-3R1} 
 +\go{1&1&1&2}{0&-2&-3&-4}{0&2&3&4}{0&-2&-3&-4} 
 +\ar{R3\to R3+R2\text{ and }R4\to R4-R2} 
 +\go{1&1&1&2}{0&1&1.5&2}{0&0&0&0}{0&0&0&0} 
 +\ar{R1\to R1-R2} 
 +\go{1&0&-0.5&0}{0&1&1.5&2}{0&0&0&0}{0&0&0&0} 
 +\end{align*} 
 + 
 +Now $z$ is a free variable, say $z=t$ where $t\in \mathbb{R}$, and from row 2 we get $y=2-1.5t$ and row 1 gives $x=0.5t$, so the solution is 
 +\[ \begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}0\\2\\0\end{bmatrix}+t\begin{bmatrix}0.5\\-1.5\\1\end{bmatrix},\quad t\in\mathbb{R}.\] 
 +*/ 
 + 
 +===== Observations about Gaussian elimination ===== 
 + 
 +{{page>gaussian elimination remarks}} 
 + 
 +====== Chapter 2: The algebra of matrices ====== 
 + 
 +=== Definition === 
 + 
 +{{page>matrix}} 
 + 
 +{{page>(i,j) entry}} 
 + 
 +=== Example === 
 + 
 +If $B=\begin{bmatrix} 99&3&5\\7&-20&14\end{bmatrix}$, then $B$ is a $2\times 3$ matrix, and the $(1,1)$ entry of $B$ is $b_{11}=99$, the $(1,3)$ entry of $B$ is $b_{13}=5$, the $(2,1)$ entry is $b_{21}=7$, etc. 
  
lecture_6.1423137443.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki