User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_6

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
lecture_6 [2015/02/05 11:50] – created rupertlecture_6 [2017/02/07 10:14] (current) rupert
Line 1: Line 1:
- ==== Examples ====+==== Examples ====
  
 === Example 1 === === Example 1 ===
 +
 +A function $f(x)$ has the form \[ f(x)=ax^2+bx+c\] where $a,b,c$ are
 +constants. Given that $f(1)=3$, $f(2)=2$ and $f(3)=4$, find $f(x)$.
 +
 +== Solution ==
 +
 +\begin{gather*} f(1)=3\implies a\cdot 1^2+b\cdot 1 +c = 3\implies a+b+c=3\\
 +f(2)=2\implies a\cdot 2^2+b\cdot 2 +c = 3\implies 4a+2b+c=2\\
 +f(3)=4\implies a\cdot 3^2+b\cdot 3 +c = 3\implies 9a+3b+c=4
 +\end{gather*}
 +
 +
 +We get a system of three linear equations in the variables $a,b,c$:
 +\begin{gather*} 
 + a+b+c=3\\
 +4a+2b+c=2\\
 +9a+3b+c=4
 +\end{gather*}
 +
 +Let's reduce the augmented matrix for this system to RREF.
 +
 +\begin{align*} 
 +\def\go#1#2#3{\begin{bmatrix}#1\\#2\\#3\end{bmatrix}}
 +\def\ar#1{\\[6pt]\xrightarrow{#1}&}
 +&\go{1&1&1&3}{4&2&1&2}{9&3&1&4}
 +\ar{R2\to R2-4R1\text{ and }R3\to R3-9R1}
 +\go{1&1&1&3}{0&-2&-3&-10}{0&-6&-8&-23}
 +\ar{R2\to -\tfrac12 R2}
 +\go{1&1&1&3}{0&1&\tfrac32&5}{0&-6&-8&-23}
 +\ar{R3\to R3+6R2}
 +\go{1&1&1&3}{0&1&\tfrac32&5}{0&0&1&7}
 +\ar{R1\to R1-R3\text{ and }R2\to R2-\tfrac32R3}
 +\go{1&1&0&-4}{0&1&0&-5.5}{0&0&1&7}
 +\ar{R1\to R1-R2}
 +\go{1&0&0&1.5}{0&1&0&-5.5}{0&0&1&7}
 +\end{align*}
 +So $a=1.5$, $b=-5.5$ and $c=7$; so 
 +\[ f(x)=1.5x^2-5.5x+7.\]
 +
 +
 +=== Example 2 ===
  
 Solve the linear system Solve the linear system
Line 25: Line 66:
 \go{1&0&0&3}{0&1&0&-1}{0&0&1&2} \go{1&0&0&3}{0&1&0&-1}{0&0&1&2}
 \end{align*} \end{align*}
-The solution is $x=3$, $y=-1$, $z=2$. So there is a unique solution: just one opint in $\mathbb{R}^3$, namely $(3,-1,2)$.+The solution is $x=3$, $y=-1$, $z=2$. So there is a unique solution: just one point in $\mathbb{R}^3$, namely $(3,-1,2)$. 
 + 
 + 
 +=== Example 3 === 
 + 
 +Solve the linear system 
 +\begin{align*}3x+y-2z+4w&=5\\x+z+w&=2\\4x+2y-6z+6w&=0\end{align*} 
 + 
 +== Solution == 
 + 
 + 
 +\begin{align*}  
 +&\go{3&1&-2&4&5}{1&0&1&1&2}{4&2&-6&6&0} 
 +\ar{R1\leftrightarrow R2} 
 +\go{1&0&1&1&2}{3&1&-2&4&5}{4&2&-6&6&0} 
 +\ar{R2\to R2-3R1\text{ and }R3\to R3-4R1} 
 +\go{1&0&1&1&2}{0&1&-5&1&-1}{0&2&-10&2&-8} 
 +\ar{R3\to R3-2R2} 
 +\go{1&0&1&1&2}{0&1&-5&1&-1}{0&0&0&0&-6} 
 +\ar{R3\to -\tfrac16 R3} 
 +\go{1&0&1&1&2}{0&1&-5&1&-1}{0&0&0&0&1} 
 +\end{align*} 
 + 
 +This is in [[REF]]. The last row corresponds to the equation  
 +\[ 0=1\] 
 +which clearly has no solution! We conclude that this system has no solutions, and hence the original linear system has no solutions either. 
 + 
 +{{page>inconsistent}} 
 + 
 +=== Example 4 === 
 + 
 +For which value(s) of $k$ does the following linear system have 
 +infinitely many solutions? 
 + 
 +\begin{gather*}x+y+z=1\\x-z=5\\2x+3y+kz=-2\end{gather*} 
 + 
 +== Solution == 
 + 
 +\begin{align*}  
 +&\go{1&1&1&1}{1&0&-1&5}{2&3&k&-2} 
 +\ar{R2\to R2-R1\text{ and }R3\to R3-2R1} 
 +\go{1&1&1&1}{0&-1&-2&4}{0&1&k-2&-4} 
 +\ar{R2\to -R2} 
 +\go{1&1&1&1}{0&1&2&-4}{0&1&k-2&-4} 
 +\ar{R3\to R3-R2} 
 +\go{1&1&1&1}{0&1&2&-4}{0&0&k-4&0} 
 +\end{align*} 
 + 
 +If $k-4=0$, then this matrix is in [[REF]]: 
 +\[\go{1&1&1&1}{0&1&2&-4}{0&0&0&0}\] In this situation, $z$ is a [[free variable]] (since there's no [[leading entry]] in the third column).  For 
 +each value of $z$ we get a different solution, so if $k-4=0$, 
 +or equivalently, if $k=4$, then there are infinitely many different 
 +solutions. 
 + 
 +If $k-4\ne0$, then we can divide the third row by $k-4$ to get the 
 +REF: \[\go{1&1&1&1}{0&1&2&-4}{0&0&1&0}\] In this situtation, there are 
 +no free variables since $x$, $y$ and $z$ are all leading variables. So 
 +if $k-4\ne 0$, or equivalently if $k\ne 4$, then there are no free 
 +variables so there is not an infinite number of solutions. (The only 
 +possibilities are that there is is a unique solution or that the 
 +system is inconsistent; and in this case you can check that there is a 
 +unique solution, although we don't need to know this to answer the 
 +question). 
 + 
 +In conclusion, the system has infinitely many solutions if and only if 
 +$k=4$. 
 + 
 +/* 
 +==== One more example ==== 
 + 
 +Solve the following [[linear system]]: 
 +\begin{align*} x+y+z&=2\\2x-z&=0\\x+3y+4z&=6\\3x+y&=2\end{align*} 
 + 
 +== Solution == 
 + 
 +We remark that there are more equations than unknowns... but this isn't a problem! We proceed as usual: 
 + 
 + 
 + 
 +\begin{align*}  
 +\def\go#1#2#3#4{\begin{bmatrix}#1\\#2\\#3\\#4\end{bmatrix}} 
 +\def\ar#1{\\[6pt]\xrightarrow{#1}&
 +&\go{1&1&1&2}{2&0&-1&0}{1&3&4&6}{3&1&0&2} 
 +\ar{R2\to R2-2R1,\ R3\to R3-R1\text{ and }R4\to R4-3R1} 
 +\go{1&1&1&2}{0&-2&-3&-4}{0&2&3&4}{0&-2&-3&-4} 
 +\ar{R3\to R3+R2\text{ and }R4\to R4-R2} 
 +\go{1&1&1&2}{0&1&1.5&2}{0&0&0&0}{0&0&0&0} 
 +\ar{R1\to R1-R2} 
 +\go{1&0&-0.5&0}{0&1&1.5&2}{0&0&0&0}{0&0&0&0} 
 +\end{align*} 
 + 
 +Now $z$ is a free variable, say $z=t$ where $t\in \mathbb{R}$, and from row 2 we get $y=2-1.5t$ and row 1 gives $x=0.5t$, so the solution is 
 +\[ \begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}0\\2\\0\end{bmatrix}+t\begin{bmatrix}0.5\\-1.5\\1\end{bmatrix},\quad t\in\mathbb{R}.\] 
 +*/ 
 + 
 +===== Observations about Gaussian elimination ===== 
 + 
 +{{page>gaussian elimination remarks}} 
 + 
 +====== Chapter 2: The algebra of matrices ====== 
 + 
 +=== Definition === 
 + 
 +{{page>matrix}} 
 + 
 +{{page>(i,j) entry}} 
 + 
 +=== Example === 
 + 
 +If $B=\begin{bmatrix} 99&3&5\\7&-20&14\end{bmatrix}$, then $B$ is a $2\times 3$ matrix, and the $(1,1)$ entry of $B$ is $b_{11}=99$, the $(1,3)$ entry of $B$ is $b_{13}=5$, the $(2,1)$ entry is $b_{21}=7$, etc. 
 + 
lecture_6.1423137028.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki