Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_5
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| lecture_5 [2016/02/09 10:27] – rupert | lecture_5 [2017/02/07 10:11] (current) – [Gaussian elimination] rupert | ||
|---|---|---|---|
| Line 55: | Line 55: | ||
| \go{1& | \go{1& | ||
| \ar{R3\to R3+R2} | \ar{R3\to R3+R2} | ||
| - | \go{1& | + | \go{1& |
| \ar{R3\to-\tfrac13R3} | \ar{R3\to-\tfrac13R3} | ||
| \go{1& | \go{1& | ||
| Line 87: | Line 87: | ||
| $$ \begin{bmatrix}x\\y\\z\\w\end{bmatrix}=\begin{bmatrix} 2\\5\\6\\0\end{bmatrix}+t\begin{bmatrix}-3\\-1\\1\\1\end{bmatrix}, | $$ \begin{bmatrix}x\\y\\z\\w\end{bmatrix}=\begin{bmatrix} 2\\5\\6\\0\end{bmatrix}+t\begin{bmatrix}-3\\-1\\1\\1\end{bmatrix}, | ||
| - | === Example === | ||
| - | |||
| - | A function $f(x)$ has the form \[ f(x)=ax^2+bx+c\] where $a,b,c$ are | ||
| - | constants. Given that $f(1)=3$, $f(2)=2$ and $f(3)=4$, find $f(x)$. | ||
| - | |||
| - | == Solution == | ||
| - | |||
| - | \begin{gather*} f(1)=3\implies a\cdot 1^2+b\cdot 1 +c = 3\implies a+b+c=3\\ | ||
| - | f(2)=2\implies a\cdot 2^2+b\cdot 2 +c = 3\implies 4a+2b+c=2\\ | ||
| - | f(3)=4\implies a\cdot 3^2+b\cdot 3 +c = 3\implies 9a+3b+c=4 | ||
| - | \end{gather*} | ||
| - | |||
| - | |||
| - | We get a system of three linear equations in the variables $a,b,c$: | ||
| - | \begin{gather*} | ||
| - | | ||
| - | 4a+2b+c=2\\ | ||
| - | 9a+3b+c=4 | ||
| - | \end{gather*} | ||
| - | |||
| - | Let's reduce the augmented matrix for this system to RREF. | ||
| - | |||
| - | \begin{align*} | ||
| - | & | ||
| - | \ar{R2\to R2-4R1\text{ and }R3\to R3-9R1} | ||
| - | \go{1& | ||
| - | \ar{R2\to -\tfrac12 R2} | ||
| - | \go{1& | ||
| - | \ar{R3\to R3+6R2} | ||
| - | \go{1& | ||
| - | \ar{R1\to R1-R3\text{ and }R2\to R2-\tfrac32R3} | ||
| - | \go{1& | ||
| - | \ar{R1\to R1-R2} | ||
| - | \go{1& | ||
| - | \end{align*} | ||
| - | So $a=1.5$, $b=-5.5$ and $c=7$; so | ||
| - | \[ f(x)=1.5x^2-5.5x+7.\] | ||
lecture_5.1455013660.txt.gz · Last modified: by rupert
