User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_5

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_5 [2016/02/09 10:27] rupertlecture_5 [2017/02/07 10:11] (current) – [Gaussian elimination] rupert
Line 55: Line 55:
 \go{1&1&3&1&25}{0&1&0&1&5}{0&-1&-3&2&-23} \go{1&1&3&1&25}{0&1&0&1&5}{0&-1&-3&2&-23}
 \ar{R3\to R3+R2} \ar{R3\to R3+R2}
-\go{1&1&3&1&25}{0&1&0&1&5}{0&0&-3&3&18}+\go{1&1&3&1&25}{0&1&0&1&5}{0&0&-3&3&-18}
 \ar{R3\to-\tfrac13R3} \ar{R3\to-\tfrac13R3}
 \go{1&1&3&1&25}{0&1&0&1&5}{0&0&1&-1&6} \go{1&1&3&1&25}{0&1&0&1&5}{0&0&1&-1&6}
Line 87: Line 87:
 $$ \begin{bmatrix}x\\y\\z\\w\end{bmatrix}=\begin{bmatrix} 2\\5\\6\\0\end{bmatrix}+t\begin{bmatrix}-3\\-1\\1\\1\end{bmatrix},\quad t\in\mathbb{R}.$$ $$ \begin{bmatrix}x\\y\\z\\w\end{bmatrix}=\begin{bmatrix} 2\\5\\6\\0\end{bmatrix}+t\begin{bmatrix}-3\\-1\\1\\1\end{bmatrix},\quad t\in\mathbb{R}.$$
  
-=== Example === 
- 
-A function $f(x)$ has the form \[ f(x)=ax^2+bx+c\] where $a,b,c$ are 
-constants. Given that $f(1)=3$, $f(2)=2$ and $f(3)=4$, find $f(x)$. 
- 
-== Solution == 
- 
-\begin{gather*} f(1)=3\implies a\cdot 1^2+b\cdot 1 +c = 3\implies a+b+c=3\\ 
-f(2)=2\implies a\cdot 2^2+b\cdot 2 +c = 3\implies 4a+2b+c=2\\ 
-f(3)=4\implies a\cdot 3^2+b\cdot 3 +c = 3\implies 9a+3b+c=4 
-\end{gather*} 
- 
- 
-We get a system of three linear equations in the variables $a,b,c$: 
-\begin{gather*}  
- a+b+c=3\\ 
-4a+2b+c=2\\ 
-9a+3b+c=4 
-\end{gather*} 
- 
-Let's reduce the augmented matrix for this system to RREF. 
- 
-\begin{align*}  
-&\go{1&1&1&3}{4&2&1&2}{9&3&1&4} 
-\ar{R2\to R2-4R1\text{ and }R3\to R3-9R1} 
-\go{1&1&1&3}{0&-2&-3&-10}{0&-6&-8&-23} 
-\ar{R2\to -\tfrac12 R2} 
-\go{1&1&1&3}{0&1&\tfrac32&5}{0&-6&-8&-23} 
-\ar{R3\to R3+6R2} 
-\go{1&1&1&3}{0&1&\tfrac32&5}{0&0&1&7} 
-\ar{R1\to R1-R3\text{ and }R2\to R2-\tfrac32R3} 
-\go{1&1&0&-4}{0&1&0&-5.5}{0&0&1&7} 
-\ar{R1\to R1-R2} 
-\go{1&0&0&1.5}{0&1&0&-5.5}{0&0&1&7} 
-\end{align*} 
-So $a=1.5$, $b=-5.5$ and $c=7$; so  
-\[ f(x)=1.5x^2-5.5x+7.\] 
  
lecture_5.1455013660.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki