Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_4_slides
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| lecture_4_slides [2016/02/03 15:32] – rupert | lecture_4_slides [2017/02/01 17:19] (current) – [Example] rupert | ||
|---|---|---|---|
| Line 67: | Line 67: | ||
| ===== Row echelon form and reduced row echelon form ===== | ===== Row echelon form and reduced row echelon form ===== | ||
| - | ==== Row echelon form (REF) ==== | + | ==== Definition: zero row ==== |
| - | + | ||
| - | /* | + | |
| - | === Definition | + | |
| {{page> | {{page> | ||
| - | === Definition === | + | ==== Definition: leading entry ==== |
| {{page> | {{page> | ||
| - | */ | + | ==== Row echelon form (REF) ==== |
| A matrix is in **row echelon form**, or **REF**, if: | A matrix is in **row echelon form**, or **REF**, if: | ||
| Line 98: | Line 95: | ||
| * e.g. $\left[\begin{smallmatrix} {\color{blue}1}& | * e.g. $\left[\begin{smallmatrix} {\color{blue}1}& | ||
| * e.g. $\left[\begin{smallmatrix} {\color{blue}1}& | * e.g. $\left[\begin{smallmatrix} {\color{blue}1}& | ||
| + | * How about $\left[\begin{smallmatrix} {\color{blue}1}& | ||
| ==== Example ==== | ==== Example ==== | ||
| Line 138: | Line 135: | ||
| - | $\newcommand{\sm}{\left[\begin{smallmatrix}}\newcommand{\esm}{\end{smallmatrix}\right]} \sm 1& | + | Solve the linear system for $\newcommand{\sm}{\left[\begin{smallmatrix}}\newcommand{\esm}{\end{smallmatrix}\right]} \sm 1& |
| - | is in REF. | + | |
| - | + | ||
| - | * Using variables $x_1, | + | |
| - | * $x_1$, $x_3$ and $x_4$ are leading: columns have a leading entry | + | |
| - | * $x_2$ and $x_5$ are free: columns don't have a leading entry | + | |
| - | | + | |
| - | | + | * Free variables: |
| + | | ||
| * $ x_4+3x_5=4\implies x_4=4-3x_5=4-3t$ | * $ x_4+3x_5=4\implies x_4=4-3x_5=4-3t$ | ||
| - | * $ x_3+x_4+x_5=5\implies x_3=5-x_4-x_5=5-(4-3t)-t=1+2t$ | + | * $ x_3+x_4+x_5=5\implies x_3=1+2t$ |
| - | * $ x_1+2x_2+3x_3=8\implies x_1=8-2x_2-3x_3=8-2s-3(1+2t)=5-2s-6t.$ | + | * $ x_1+2x_2+3x_3=8\implies x_1=5-2s-6t.$ |
| * So $ \left[\begin{smallmatrix} x_1\\x_2\\x_3\\x_4 \\x_5\end{smallmatrix}\right]= \left[\begin{smallmatrix} 5\\0\\1\\4\\0\end{smallmatrix}\right] +s\left[\begin{smallmatrix} -2\\1\\0\\0\\0\end{smallmatrix}\right] +t\left[\begin{smallmatrix} -6\\0\\2\\-3\\1\end{smallmatrix}\right], | * So $ \left[\begin{smallmatrix} x_1\\x_2\\x_3\\x_4 \\x_5\end{smallmatrix}\right]= \left[\begin{smallmatrix} 5\\0\\1\\4\\0\end{smallmatrix}\right] +s\left[\begin{smallmatrix} -2\\1\\0\\0\\0\end{smallmatrix}\right] +t\left[\begin{smallmatrix} -6\\0\\2\\-3\\1\end{smallmatrix}\right], | ||
| - | * (The solution | + | * 2 free vars, 5 vars in all |
| + | * Solution | ||
lecture_4_slides.1454513537.txt.gz · Last modified: by rupert
