User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_2_sides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_2_sides [2016/01/24 16:24] rupertlecture_2_sides [2016/01/24 16:44] (current) rupert
Line 2: Line 2:
 ==== Linear equations in 3 variables ==== ==== Linear equations in 3 variables ====
  
-=== Definition ===+==== Definition ====
  
 {{page>linear equation in 3 variables}} {{page>linear equation in 3 variables}}
  
-=== Examples === +==== Examples ====
- +
-Note: you can view the examples below from different angles, by clicking the "Rotate 3D graphics view" button. +
-{{ screenshot_from_2015-01-22_10_40_28.png?nolink }}+
  
   * $x+y+z=1$ <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/528999/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe></html>   * $x+y+z=1$ <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/528999/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe></html>
 +
 +==== ====
   * $x+y=1$ This may be viewed as a linear equation in 3 variables, since it is equivalent to $x+y+0z=1$. <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/529043/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe></html>   * $x+y=1$ This may be viewed as a linear equation in 3 variables, since it is equivalent to $x+y+0z=1$. <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/529043/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe></html>
 +
 +==== ====
   * $z=1$, viewed as the equation $0x+0y+z=1$ <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/529069/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe><br /></html>This plane is horizontal (parallel to the $x$-$y$ plane).   * $z=1$, viewed as the equation $0x+0y+z=1$ <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/529069/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe><br /></html>This plane is horizontal (parallel to the $x$-$y$ plane).
  
Line 19: Line 20:
 {{page>linear equation}} {{page>linear equation}}
  
-=== Example ===+==== Example ====
  
 \[ 3x_1+5x_2-7x_3+11x_4=12\] is a linear equation in 4 variables.  \[ 3x_1+5x_2-7x_3+11x_4=12\] is a linear equation in 4 variables. 
Line 32: Line 33:
 {{page>system of linear equations}} {{page>system of linear equations}}
  
-=== Example ===+==== Example ====
 Find the line of intersection of the two planes  Find the line of intersection of the two planes 
-\[ x+3y+z=5\] and \[ 2x+7y+4z=17.\]+x+3y+z=5and 2x+7y+4z=17$.
  
-Just to get an idea of what's going on, here's a picture of the two planes:+  * <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/529147/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe></html>
  
-<html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/529147/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe></html>+==== Intersection of $ x+3y+z=5$ and $ 2x+7y+4z=17$ ====
  
-To find the equation of the line of intersection, we must find the points which are solutions of //both// equations at the same time. Eliminating variables, we get +  * To find the equation of the line of intersection, we must find the points which are solutions of //both// equations at the same time.  
-\[ x=-16+5z,\quad y=7-2z\] +  * Eliminating variables, we get $x=-16+5z$$y=7-2z$ 
-which tells us that for any value of $z$, the point  +  * The line of intersection consists of the points $(-16+5z,7-2z,z)$, where $z\in\mathbb{R}$
-\[ (-16+5z,7-2z,z)\+
-is a typical point in the line of intersection.+
lecture_2_sides.1453652697.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki