| Next revision | Previous revision |
| lecture_2_sides [2016/01/24 16:24] – created rupert | lecture_2_sides [2016/01/24 16:44] (current) – rupert |
|---|
| | ~~REVEAL~~ |
| ==== Linear equations in 3 variables ==== | ==== Linear equations in 3 variables ==== |
| |
| === Definition === | ==== Definition ==== |
| |
| {{page>linear equation in 3 variables}} | {{page>linear equation in 3 variables}} |
| |
| === Examples === | ==== Examples ==== |
| | |
| Note: you can view the examples below from different angles, by clicking the "Rotate 3D graphics view" button. | |
| {{ screenshot_from_2015-01-22_10_40_28.png?nolink }} | |
| |
| * $x+y+z=1$ <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/528999/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe></html> | * $x+y+z=1$ <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/528999/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe></html> |
| | |
| | ==== ==== |
| * $x+y=1$ This may be viewed as a linear equation in 3 variables, since it is equivalent to $x+y+0z=1$. <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/529043/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe></html> | * $x+y=1$ This may be viewed as a linear equation in 3 variables, since it is equivalent to $x+y+0z=1$. <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/529043/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe></html> |
| | |
| | ==== ==== |
| * $z=1$, viewed as the equation $0x+0y+z=1$ <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/529069/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe><br /></html>This plane is horizontal (parallel to the $x$-$y$ plane). | * $z=1$, viewed as the equation $0x+0y+z=1$ <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/529069/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe><br /></html>This plane is horizontal (parallel to the $x$-$y$ plane). |
| |
| {{page>linear equation}} | {{page>linear equation}} |
| |
| === Example === | ==== Example ==== |
| |
| \[ 3x_1+5x_2-7x_3+11x_4=12\] is a linear equation in 4 variables. | \[ 3x_1+5x_2-7x_3+11x_4=12\] is a linear equation in 4 variables. |
| {{page>system of linear equations}} | {{page>system of linear equations}} |
| |
| === Example === | ==== Example ==== |
| Find the line of intersection of the two planes | Find the line of intersection of the two planes |
| \[ x+3y+z=5\] and \[ 2x+7y+4z=17.\] | $ x+3y+z=5$ and $ 2x+7y+4z=17$. |
| |
| Just to get an idea of what's going on, here's a picture of the two planes: | * <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/529147/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe></html> |
| |
| <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/529147/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe></html> | ==== Intersection of $ x+3y+z=5$ and $ 2x+7y+4z=17$ ==== |
| |
| To find the equation of the line of intersection, we must find the points which are solutions of //both// equations at the same time. Eliminating variables, we get | * To find the equation of the line of intersection, we must find the points which are solutions of //both// equations at the same time. |
| \[ x=-16+5z,\quad y=7-2z\] | * Eliminating variables, we get $x=-16+5z$, $y=7-2z$ |
| which tells us that for any value of $z$, the point | * The line of intersection consists of the points $(-16+5z,7-2z,z)$, where $z\in\mathbb{R}$ |
| \[ (-16+5z,7-2z,z)\] | |
| is a typical point in the line of intersection. | |