User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_23_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_23_slides [2017/04/24 11:27] – [Skew lines in $\mathbb{R}^3$] rupertlecture_23_slides [2017/04/24 11:30] (current) – [Example using $\def\dist{\text{dist}}\dist(B,L)=\frac{\|\vec{AB}\times\vv\|}{\|\vv\|}$] rupert
Line 23: Line 23:
  
  
-==== Example using $\def\dist{\text{dist}}\dist(B,L)=\frac{\|\vec{AB}\times\vv\|}{\|\vv\|}$ ====+==== Example using $\def\vv{\vec v}\def\dist{\text{dist}}\dist(B,L)=\frac{\|\vec{AB}\times\vv\|}{\|\vv\|}$ ====
  
 Find the distance from the point $B=(1,2,3)$ to the line \[L:\c xyz=\c10{-1}+t\c41{-5},\quad t\in\mathbb{R}.\] Find the distance from the point $B=(1,2,3)$ to the line \[L:\c xyz=\c10{-1}+t\c41{-5},\quad t\in\mathbb{R}.\]
Line 59: Line 59:
  
 ==== ==== ==== ====
-  * Let $\Pi$ = plane with normal vector $\nn$ which contains $L_1$.{{ :sl2.png?nolink&700 |}}+  * Let $\Pi$ = plane with normal vector $\nn$ which contains $L_1$.{{ :sl2.png?nolink&800 |}}
   * Let $B$ be in $L_2$, and $A$ in $\Pi$ (e.g. any $A$ in $L_1$)   * Let $B$ be in $L_2$, and $A$ in $\Pi$ (e.g. any $A$ in $L_1$)
   * Then $\dist(L_1,L_2)=\dist(B,\Pi) = \frac{|\vec{AB}\cdot \nn|}{\|\nn\|}$   * Then $\dist(L_1,L_2)=\dist(B,\Pi) = \frac{|\vec{AB}\cdot \nn|}{\|\nn\|}$
Line 75: Line 75:
 ==== Distance between lines in $\mathbb{R}^3$ in general ==== ==== Distance between lines in $\mathbb{R}^3$ in general ====
  
-  * The formula $\dist(L_1,L_2)=\frac{|\vec{AB}\cdot \nn|}{\|\nn\|}$ where $\nn=\vec v_1\times vec v_2$ works for+  * The formula $\dist(L_1,L_2)=\frac{|\vec{AB}\cdot \nn|}{\|\nn\|}$ where $\nn=\vec v_1\times \vec v_2$ works for
     * skew lines (not parallel, not intersecting)     * skew lines (not parallel, not intersecting)
     * actually: any non-parallel lines $L_1$, $L_2$     * actually: any non-parallel lines $L_1$, $L_2$
Line 82: Line 82:
     * Instead: observe that $\dist(L_1,L_2)=\dist(A,L_2)$ for any point $A$ in $L_1$     * Instead: observe that $\dist(L_1,L_2)=\dist(A,L_2)$ for any point $A$ in $L_1$
     * So we can use one of of the point-to-line distance formulae we saw earlier.     * So we can use one of of the point-to-line distance formulae we saw earlier.
 +
 +==== End of the course ====
 +
 +  * Next time: some examples from the most recent exam paper
 +  * Have a look at these before Thursday's lecture to prepare
lecture_23_slides.1493033232.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki