User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_23_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_23_slides [2017/04/24 11:05] – [Skew lines in $\mathbb{R}^3$] rupertlecture_23_slides [2017/04/24 11:30] (current) – [Example using $\def\dist{\text{dist}}\dist(B,L)=\frac{\|\vec{AB}\times\vv\|}{\|\vv\|}$] rupert
Line 23: Line 23:
  
  
-==== Example using $\def\dist{\text{dist}}\dist(B,L)=\frac{\|\vec{AB}\times\vv\|}{\|\vv\|}$ ====+==== Example using $\def\vv{\vec v}\def\dist{\text{dist}}\dist(B,L)=\frac{\|\vec{AB}\times\vv\|}{\|\vv\|}$ ====
  
 Find the distance from the point $B=(1,2,3)$ to the line \[L:\c xyz=\c10{-1}+t\c41{-5},\quad t\in\mathbb{R}.\] Find the distance from the point $B=(1,2,3)$ to the line \[L:\c xyz=\c10{-1}+t\c41{-5},\quad t\in\mathbb{R}.\]
Line 51: Line 51:
 ===== Skew lines in $\mathbb{R}^3$ ===== ===== Skew lines in $\mathbb{R}^3$ =====
  
-  * These are lines which are not parallel, and do not cross. +  * Two lines are skew if they are not parallel, and do not cross
-  * Take skew lines $L_1$ and $L_2$ - we'll find a formula for the distance +  * Skew lines only exist in $\bR^n$ for $n\ge3$
-  * $\vv_1$, $\vv_2$: direction vectors {{ :sl1.png?nolink&400 |}}+  * Take skew lines $L_1$ and $L_2$ in $\rt$, direction vectors $\vv_1,\vv_2${{ :sl1.png?nolink&400 |}} 
 +  * Let's find a formula for $\dist(L_1,L_2)$
   * $\dist(L_1,L_2)$ is measured orthogonal to both $\vv_1$ and $\vv_2$   * $\dist(L_1,L_2)$ is measured orthogonal to both $\vv_1$ and $\vv_2$
   * i.e. in direction of $\nn=\vv_1\times\vv_2$.   * i.e. in direction of $\nn=\vv_1\times\vv_2$.
  
 ==== ==== ==== ====
-  * Let $\Pi$ = plane with normal vector $\nn$ which contains $L_1$.{{ :sl2.png?nolink&600 |}}+  * Let $\Pi$ = plane with normal vector $\nn$ which contains $L_1$.{{ :sl2.png?nolink&800 |}}
   * Let $B$ be in $L_2$, and $A$ in $\Pi$ (e.g. any $A$ in $L_1$)   * Let $B$ be in $L_2$, and $A$ in $\Pi$ (e.g. any $A$ in $L_1$)
   * Then $\dist(L_1,L_2)=\dist(B,\Pi) = \frac{|\vec{AB}\cdot \nn|}{\|\nn\|}$   * Then $\dist(L_1,L_2)=\dist(B,\Pi) = \frac{|\vec{AB}\cdot \nn|}{\|\nn\|}$
-  * (This actually works for any non-parallel lines, even if they cross) +  
 ==== Example ==== ==== Example ====
  
Line 72: Line 72:
   * $\vec{AB}=\c 220$   * $\vec{AB}=\c 220$
   * So $\dist(L_1,L_2)=\frac{|\vec{AB}\cdot \nn|}{\|\nn\|}=\frac{2(5)+2(2)+0(-3)}{\sqrt{5^2+2^2+3^2}} = \frac{14}{\sqrt{38}}$.   * So $\dist(L_1,L_2)=\frac{|\vec{AB}\cdot \nn|}{\|\nn\|}=\frac{2(5)+2(2)+0(-3)}{\sqrt{5^2+2^2+3^2}} = \frac{14}{\sqrt{38}}$.
 +
 +==== Distance between lines in $\mathbb{R}^3$ in general ====
 +
 +  * The formula $\dist(L_1,L_2)=\frac{|\vec{AB}\cdot \nn|}{\|\nn\|}$ where $\nn=\vec v_1\times \vec v_2$ works for
 +    * skew lines (not parallel, not intersecting)
 +    * actually: any non-parallel lines $L_1$, $L_2$
 +  * What about parallel lines?
 +    * The formula can't work because we'd have $\vec v_1=\vec v_2$ so $\vec n=\vec v_1\times \vec v_2=\vec 0$
 +    * Instead: observe that $\dist(L_1,L_2)=\dist(A,L_2)$ for any point $A$ in $L_1$
 +    * So we can use one of of the point-to-line distance formulae we saw earlier.
 +
 +==== End of the course ====
 +
 +  * Next time: some examples from the most recent exam paper
 +  * Have a look at these before Thursday's lecture to prepare
lecture_23_slides.1493031924.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki